考虑尖峰负荷特性指标的用户用电行为分析Analysis of Power Consumption Behavior of Users Considering Peak Load Characteristic Indicators
赵爽,阮俊枭,支刚,吴政声,万航羽,王志敏,刘民伟
ZHAO Shuang,RUAN Junxiao,ZHI Gang,WU Zhengsheng,WAN Hangyu,WANG Zhimin,LIU Minwei
摘要(Abstract):
针对当前电力大数据背景下用户用电行为分析对尖峰负荷特性挖掘不足的问题,提出一种考虑尖峰负荷特性指标的用户用电行为分析方法。首先,对尖峰负荷定义及尖峰负荷特性指标进行说明,并根据尖峰负荷特性指标构建尖峰特性特征集;然后,使用K-means算法对特征集进行聚类并获取聚类结果标签,使用轮廓系数评估不同类别的聚类性能;最后对不同标签用户用电特性进行分析。采用美国国家可再生能源实验室开源用户用电数据进行仿真计算,计算结果表明,使用尖峰特性特征集较原始用户数据集具有更好的聚类效果。
Aiming at the insufficient mining of peak load characteristics by user power consumption behavior analysis under the background of current electric power big data, an analysis method considering peak load characteristic indicators is proposed. Firstly, the definition of peak load and peak load characteristic index are explained, and the peak characteristic feature set is constructed according to peak load characteristic index. Then, K-means algorithm is used to cluster the feature set and obtain clustering result labels, and evaluate different clustering performances of different categories by contour coefficient. Finally, power consumption characteristics of different label users are analyzed. Simulation calculation is carried out by using open-source user electricity data of National Renewable Energy Laboratory. The results show that the use of peak characteristic feature set has a better clustering effect than the original user data set.
关键词(KeyWords):
尖峰负荷;K-means算法;聚类;轮廓系数;用电行为
peak load characteristic index;K-means algorithm;cluster analysis;contour coefficient;power consumption behavior
基金项目(Foundation): 国家自然科学基金资助项目“基于数据驱动的综合能源电力系统分布互联建模研究”(52107097);; 云南电网公司规划专题科技项目“云南‘十四五’尖峰负荷控制实施路径及配套政策机制研究”(0500002021030203GHJ00053)
作者(Author):
赵爽,阮俊枭,支刚,吴政声,万航羽,王志敏,刘民伟
ZHAO Shuang,RUAN Junxiao,ZHI Gang,WU Zhengsheng,WAN Hangyu,WANG Zhimin,LIU Minwei
参考文献(References):
- [1]齐军,徐也童,万江,等.大规模风电场接入对内蒙古电网安全稳定的影响[J].内蒙古电力技术,2009,27(4):1-5.QI Jun, XU Yetong, WAN Jiang, et al. Security and Stability Influence of Large Scale Wind Farms Integration on Inner Mongolia Grid[J]. Inner Mongolia Electric Power, 2009, 27(4):1-5.
- [2]胡江溢,祝恩国,杜新纲,等.用电信息采集系统应用现状及发展趋势[J].电力系统自动化,2014,38(2):131-135.HU Jiangyi, ZHU Enguo, DU Xingang, et al. Application Status and Development Trend of Power Consumption Information Collection System[J]. Automation of Electric Power Systems, 2014, 38(2):131-135.
- [3]程祥.基于负荷量测数据的电力负荷聚类方法研究[D].杭州:浙江大学,2017.
- [4]谢清玉,张耀坤,李经纬.面向智能电网的电力大数据关键技术应用[J].电网与清洁能源,2021,37(12):39-46.XIE Qingyu, ZHANG Yaokun, LI Jingwei. Application of Key Technologies of Power Big Data in Smart Grids[J]. Advances of Power System&Hydroelectric Engineering, 2021, 37(12):39-46.
- [5]李清.基于改进PSO-PFCM聚类算法的电力大数据异常检测方法[J].电力系统保护与控制,2021,49(18):161-166.LI Qing. Power Big Data Anomaly Detection Method Based on An Improved PSO-PFCM Clustering Algorithm[J]. Power System Protection and Control, 2021, 49(18):161-66.
- [6]辛苗苗,张延迟,解大.基于电力大数据的用户用电行为分析研究综述[J].电气自动化,2019,41(1):1-4,27.XIN Miaomiao, ZHANG Yanchi, XIE Da. Summary of Researches on Consumer Behavior Analysis Based on Big Power Data[J]. Electrical Automation, 2019, 41(1):1-4, 27.
- [7]赵晋泉,夏雪,刘子文,等.电力用户用电特征选择与行为画像[J].电网技术,2020,44(9):3488-3496.ZHAO Jinquan, XIA Xue, LIU Ziwen, et al. User Electricity Consumption Feature Selection and Behavioral Portrait[J]. Power System Technology, 2020, 44(9):3488-3496.
- [8]龙翩翩,苏海林.一种基于多源信息融合的窃电行为在线监测方法[J].机电工程技术,2019,48(6):189-191.LONG Pianpian, SU Meilin. An Online Monitoring Method of Electric Larceny Based on Multisource Information Fusion[J]. Mechanical&Electrical Engineering Technology, 2019, 48(6):189-191.
- [9]朱炎平.基于聚类的用户用电行为分析研究[D].北京:华北电力大学,2017.
- [10]海沫.大数据聚类算法综述[J].计算机科学,2016,43(增刊1):380-383.HAI Mo. Survey of Clustering Algorithms for Big Data[J]. Computer Science, 2016, 43(S1):380-383.
- [11]伍育红.聚类算法综述[J].计算机科学,2015,42(增刊1):491-499,524.WU Yuhong. General Overview on Clustering Algorithms[J]. Computer Science, 2015, 42(S1):491-499, 524.
- [12]向培素.聚类算法综述[J].西南民族大学学报(自然科学版),2011,37(增刊1):112-114.XIANG Peisu. General Overview on Clustering Algorithms[J]. Journal of Southwest University for Nationalities Natural Science Edition, 2011, 37(S1):112-114.
- [13]庞传军,余建明,冯长有,等.基于LSTM自动编码器的电力负荷聚类建模及特性分析[J].电力系统自动化,2020,44(23):57-63.PANG Chuanjun, YU Jianming, FENG Changyou, et al. Clustering Modeling and Characteristic Analysis of Power Load Based on Long-short-erm Memory Auto-encoder[J]. Automation of Electric Power Systems, 2020,44(23):57-63.
- [14]杨卫红,赖清平,兰宇,等.基于调节潜力指标的用户用电行为聚类分析算法研究[J].电力建设,2018,39(6):96-104.YANG Weihong, LAI Qingping, LAN Yu, et al.Research on Clustering Analysis Algorithm Based on Adjustable Potential Index for User Power Consumption Behavior[J]. Electric Power Construction, 2018,39(6):96-104.
- [15]张素香,刘建明,赵丙镇,等.基于云计算的居民用电行为分析模型研究[J].电网技术,2013,37(6):1542-1546.ZHANG Suxiang, LIU Jianming, ZHAO Bingzhen, et al. Cloud Computing-Based Analysis on Residential Electricity Consumption Behavior[J]. Power System Technology, 2013, 37(6):1542-1546.
- [16]李维,王洪林,南峰涛,等.云南省两地区典型用户负荷特性及用电特点分析[J].云南电力技术,2019,47(4):9-43.LI Wei, WANG Honglin, NAN Fengtao, et al. Analysis on Power Load and Consumption Characteristics of Representative Consumers in Two Regions from Yunnan Province[J]. Yunnan Electric Power, 2019, 47(4):39-43.
- [17]吉杨,李智慧,李振龙,等.基于单一变量法的大用户线损管理辅助决策模型研究[J].东北电力技术,2019,40(8):35-38,42.JI Yang, LI Zhihui, LI Zhenlong, et al. Decision Supporting Model for Big Customer Line Loss Management Based on Single Variable Method[J]. Northeast Electric Power Technology, 2019, 40(8):35-38, 42.
- [18]朱文俊,王毅,罗敏,等.面向海量用户用电特性感知的分布式聚类算法[J].电力系统自动化,2016,40(12):21-27.ZHU Wenjun, WANG Yi, LUO Min, et al. Distributed Clustering Algorithm for Awareness of Electricity Consumption Characteristics of Massive Consumer[J].Automation of Electric Power Systems, 2016, 40(12):21-27.
- [19]李飞,王鸿玺,谭阿峰,等.考虑用电行为分析的电力用户用电预测研究[J].电子测量技术,2020,43(1):74-79.LI Fei, WANG Hongxi, TAN Afeng, et al. Study on the Power Consumption Forecast Considering the Analysis of Power Consumption Behavior[J]. Electronic Measurement Technology, 2020, 43(1):74-79.
- [20]陆俊,朱炎平,彭文昊,等.智能用电用户行为分析特征优选策略[J].电力系统自动化,2017,41(5):58-63,83.LU Jun, ZHU Yanping, PENG Wenhao, et al.Feature Selectiong Strategy for Electricity Consumption Behavior Analysis[J]. Automation of Electric Power Systems, 2017, 41(5):58-63, 83.
- [21]孙胜博,张凯,冯剑,等.基于负荷特性分析的电力用户用电行为特征研究[J].内蒙古电力技术,2020,38(1):40-44.SUN Shengbo, ZHANG Kai, FENG Jian, et al.Research on Characteristics of Customer Electricity Behavior Based on Load Characteristics[J]. Inner Mongolia Electric Power, 2020, 38(1):40-44.
- [22]张爽,丁麒,景伟强,等.分时电价下考虑舒适度的家庭负荷调节特性分析[J].浙江电力,2017,36(12):42-46.ZHANG Shuang, DING Lin, JING Weiqiang, et al.Analysis of Household Load Regulation Considering Comfort under TOU Price[J]. Zhejiang Electric Power,2017, 36(12):42-46.
- [23]彭勃,李作红,李猛,等.基于近邻传播算法的电力用户负荷曲线聚类分析[J].机电工程技术,2019,48(4):183-186,224.PENG Bo, LI Zuohong, LI Meng, et al. Power Load Profiles Clustering Method based on Affinity Propagation Algorithm[J]. Mechanical&Electrical Engineering Technology, 2019, 48(4):183-186, 224.
- 尖峰负荷
- K-means算法
- 聚类
- 轮廓系数
- 用电行为
peak load characteristic index - K-means algorithm
- cluster analysis
- contour coefficient
- power consumption behavior