燃煤机组直接耦合生物质的模型构建与碳减排分析Model Construction and Carbon Emission Reduction Analysis of Direct Coupling of Biomass in Coal-Fired Unit
朱骏杰,管俊豪,岳子尧,李强
ZHU Junjie,GUAN Junhao,YUE Ziyao,LI Qiang
摘要(Abstract):
燃煤机组直接耦合生物质可以显著降低二氧化碳排放量,是燃煤电厂实现“双碳”目标的主要路径之一。通过Aspen Plus搭建的300 MW煤粉锅炉模型模拟生物质直接耦合煤燃烧发电流程,根据模拟结果以及建立的经济性模型和碳减排模型,分析了燃煤机组掺烧生物质的度电成本和碳排放变化。结果表明,随着生物质掺烧比例增大,燃煤机组的额外每度电成本逐渐升高,但考虑碳税因素后,额外每度电成本将会降低。因此合理设置碳税价格可以有效促进生物质的掺烧,通过调节碳税可以降低掺烧生物质带来的经济成本。燃煤机组耦合生物质可明显减少二氧化碳排放量,关键是降低生物质的含水量。研究结果为生物质直接耦合煤燃烧发电的技术实现和经济性评估提供了参考。
Direct coupling of biomass in coal-fired power plants can significantly reduce carbon dioxide emissions, which is one of the most important paths for coal-fired power plants to achieve the "carbon peaking and carbon neutrality" goal. In this paper, a 300 MW pulverized coal boiler model built by Aspen Plus is used to simulate the direct coupling of biomass in coal-fired power plants. According to the simulation results and the established economic and carbon emission reduction model, the electricity cost and carbon emission changes of coal-fired unit mixed with biomass are analyzed. The results show that with the increase of biomass blending ratio, the additional cost per kWh of coal-fired plant will gradually increase, but after considering the carbon tax factor, the additional cost per kWh will decrease. Therefore, setting a reasonable carbon tax price can effectively promote biomass blending and utilization, and the economic cost of biomass blending can be reduced by adjusting carbon tax. The coupling of coal-fired units with biomass can significantly reduce CO_2 emissions, and the key is to reduce the water content of biomass. The research results provide a reference and support for the technical implementation and economic evaluation of direct coupling of biomass in coal-fired power plants.
关键词(KeyWords):
燃煤机组;生物质;直接耦合;经济性分析;CO_2减排
coal-fired power plants;biomass;direct coupling;economic analysis;CO_2 emissions reduction
基金项目(Foundation): 江苏省“双创博士”项目“制备污泥煤浆的关键技术研究”(JSSCBS20220277)
作者(Author):
朱骏杰,管俊豪,岳子尧,李强
ZHU Junjie,GUAN Junhao,YUE Ziyao,LI Qiang
参考文献(References):
- [1]王一坤,徐晓光,王栩,等.燃煤机组多源耦合发电技术及应用现状[J].热力发电,2022,51(1):60-68.WANG Yikun,XU Xiaoguang,WANG Xu,et al.Multi-source coupling coal-fired power generating technology and its application status[J].Thermal Power Generation,2022,51(1):60-68.
- [2]王飞,张盛,王丽花.燃煤耦合污泥焚烧发电技术研究进展[J].洁净煤技术,2022,28(3):82-94.WANG Fei,ZHANG Sheng,WANG Lihua.Research progress of coal-fired coupled sludge incineration power generation technology[J].Clean Coal Technology,2022,28(3):82-94.
- [3]李少华,刘冰,彭红文,等.燃煤机组耦合生物质直燃发电技术研究[J].电力勘测设计,2021(6):26-31,36.LI Shaohua,LIU Bing,PENG Hongwen,et al.Biomass direct combustion of co-firing technology research in coal-fired power plants[J].Electric Power Survey&Design,2021(6):26-31,36.
- [4]王西伦,刘平,初伟,等.燃煤生物质气耦合燃烧负荷适应性数值模拟研究[J].电力科技与环保,2022,38(2):87-94.WANG Xilun,LIU Ping,CHU Wei,et al.Numerical simulation study on load adaptability under co-firing of biomass gas and coal[J].Electric Power Environmental Protection,2022,38(2):87-94.
- [5]周义,张守玉,郎森,等.煤粉炉掺烧生物质发电技术研究进展[J].洁净煤技术,2022,28(6):26-34.ZHOU Yi,ZHANG Shouyu,LANG Sen,et al.Research progress of biomass blending technology in pulverized coal furnace for power generation[J].Clean Coal Technology,2022,28(6):26-34.
- [6]郭庆华,卫俊涛,龚岩,等.多喷嘴对置式气流床气化炉内热态行为的研究进展[J].煤炭学报,2020,45(1):403-413.GUO Qinghua,WEI Juntao,GONG Yan,et al.Research progress on hot-model behavior of opposed multi-burner entrained-flow gasification[J].Journal of China Coal Society,2020,45(1):403-413.
- [7]闵超,安达,王月,等.我国农村固体废弃物资源化研究进展[J].农业资源与环境学报,2020,37(2):151-160.MIN Chao,AN Da,WANG Yue,et al.Progress of rural solid waste resource utilization in China[J].Journal of Agricultural Resources and Environment,2020,37(2):151-160.
- [8]王小杰.工业固体废弃物现状和处理对策[J].建筑工程与管理,2022,4(9):106-108.
- [9]XU Y,YANG K,ZHOU J,et al.Coal-biomass co-firing power generation technology:Current status,challenges and policy implications[J].Sustainability,2020,12(9):3692.
- [10]St?rner F,Lind F,Rydén M.Oxygen carrier aided combustion in fluidized bed boilers in Sweden-Review and future outlook with respect to affordable bed materials[J].Applied Sciences,2021,11(17):7935.
- [11]胡南,谭雪梅,刘世杰,等.循环流化床生物质直燃发电技术研究进展[J].洁净煤技术,2022,28(3):32-40.HU Nan,TAN Xuemei,LIU Shijie,et al.Research progress on power generation of biomass direct combustion in circulating fluidized bed[J].Clean Coal Technology,2022,28(3):32-40.
- [12]解红叶.《中国可再生能源发展报告2017》正式发布[J].水力发电,2018,44(12):23.
- [13]付鹏,徐国平,李兴华,等.我国生物质发电行业发展现状与趋势及碳减排潜力分析[J].工业安全与环保,2021,47(增刊1):48-52.FU Peng,XU Guoping,LI Xinghua,et al.Analysis of the Development Status and Trends of China′s Biomass Power Industry and Carbon Emission Reduction Potential[J].Industrial Safety and Environmental Protection,2021,47(S1):48-52.
- [14]郭慧娜,吴玉新,王学斌,等.燃煤机组耦合农林生物质发电技术现状及展望[J].洁净煤技术,2022,28(3):14-22.GUO Huina,WU Yuxin,WANG Xuebin,et al.Current status of power generation technology of the agriculture and forest biomass co-firing in coal-fired power plants[J].Clean Coal Technology,2022,28(3):12-22.
- [15]刘家利,王志超,邓凤娇,等.大型煤粉电站锅炉直接掺烧生物质研究进展[J].洁净煤技术,2019,25(5):17-23.LIU Jiali,WANG Zhichao,DENG Fengjiao,et al.Research progress on direct blending biomass in pulverized coal fired boilers of large power plants[J].Clean Coal Technology,2019,25(5):17-23.
- [16]PEI X,HE B,YAN L,et al.Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus[J].Energy Conversion and Management,2013,76:581-587.
- [17]范翼麟,王志超,王一坤,等.碳税交易下的典型生物质混烧技术经济分析[J].洁净煤技术,2021,27(4):111-116.FAN Jilin,WANG Zhichao,WANG Yikun,et al.Techno-economic analysis of typical biomass co-combustion under carbon taxtrading[J].Clean Coal Technology,2021,27(4):111-116.
- [18]Wang X,Rahman Z U,LYU Z,et al.Experimental study and design of biomass co-firing in a full-scale coal-fired furnace with storage pulverizing system[J].Agronomy,2021,11(4):810.
- [19]孙依.煤粉锅炉耦合生物质发电系统技术经济分析[D].武汉:华中科技大学,2018.
- [20]向鹏,吴跃明,祁超,等.生物质气化-燃煤耦合发电气化模型研究[J].分布式能源,2018,3(1):1-6.XIANG Peng,WU Yueming,QI Chao,et al.Gasification Model of Biomass Gasification-Coal Coupling for Power Generation System[J].Distributed Energy,2018,3(1):1-6.