内蒙古电力技术

2021, (04) 46-50

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于SA-BP算法的蒙西电力现货市场价格预测
Price Forecasting for West Inner Mongolia Power Spot Market Based on SA-BP Algorithm

王金鑫,蒋子彦,王琪,李东,于福荣,刘海,任婧媛
WANG Jinxin,JIANG Ziyan,WANG Qi,LI Dong,YU Furong,LIU Hai,REN Jingyuan

摘要(Abstract):

针对传统BP神经网络易陷入局部最优的问题,结合模拟退火算法中的随机扰动机制和BP神经网络的梯度下降法对神经网络阈值与权值进行调整,从而避免BP网络陷入局部最优陷阱。同时针对蒙西电力市场外送电量、新能源装机占比高的特点,将样本预处理为预测净负荷与历史电价,以减少因外送电量与新能源因素产生的预测误差。最后采用蒙西电力市场历史运行数据对电价进行预测。结果表明,经模拟退火算法优化后的BP神经网络模型可根据蒙西电力市场特征,对电价进行有效预测。
The traditional BP neural network is easy to fall into the local optimal solution. To deal with this problem, the threshold and weight of the BP neural network are adjusted by combining the random disturbance in the simulated annealing algorithm. Considering the characteristics of high proportion of external power supply and renewable energy installation in West Inner Mongolia power market, the samples are preprocessed to predict net load and historical electricity price to minimize the predict error. The historical data of a certain period of time in West Inner Mongolia power market are used to predict the electricity price. The result shows that BP neural network model optimized by simulated annealing algorithm can effectively predict the electricity price after considering the market characteristics of West Inner Mongolia power market.

关键词(KeyWords): 模拟退火算法;BP神经网络算法;电力现货市场;电价预测;局部最优
simulated annealing algorithm;BP neural network algorithm;power spot market;electricity price forecasting;local optimal solution

Abstract:

Keywords:

基金项目(Foundation): 北京京能电力股份有限公司科技项目“面向蒙西电力现货市场的辅助决策系统研究及京能电力在蒙西现货市场的运营效益分析”(DL202001)

作者(Author): 王金鑫,蒋子彦,王琪,李东,于福荣,刘海,任婧媛
WANG Jinxin,JIANG Ziyan,WANG Qi,LI Dong,YU Furong,LIU Hai,REN Jingyuan

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享