热电联产机组协同改造及其调峰与供热能力分析Analysis of Modification of Cogeneration Units and Its Peak Regulation and Heat Supply Capacity
刘光耀,王学栋
LIU Guangyao,WANG Xuedong
摘要(Abstract):
通过对某电厂2台135 MW机组和2台330 MW机组进行高背压与低压缸切缸两种方式的协同改造,在多种供热模式下协同运行,由改造后的性能试验得到4台机组供热期的性能指标,分析得出供热期全厂机组的调峰能力为504.39 MW,比改造前提高了9.39 MW,而且最低电负荷降低了39.27 MW。供热能力增加的同时,调峰能力和低负荷的调度灵活性明显提升。针对电厂4台机组分别带东、西两个供热管网的情况,基于机组的运行特性和能耗指标,优化多种供热模式下的协同运行方式和电、热负荷分配。在全厂热负荷和机组总进汽量不变的条件下,4台机组带电负荷能力增加了25~40 MW。
Through the collaborative transformation of two 135 MW units and two 330 MW units of a power plant with high backpressure and low-pressure cylinder cutting, which operating in multiple heating modes, the performance indexes of four units in the heating period are obtained from the performance test after transformation, and the analysis shows that the peaking capacity of the whole unit in the heating period is 504.39 MW, which is 9.39 MW higher than the one before the transformation, and the minimum load is 39.27 MW lower. While the heating capacity is increased, the peak shifting capacity and the scheduling flexibility of low load are significantly improved. In view of the fact that the four units of the power plant are equipped with two heat supply pipelines in the east and west respectively, based on the operating characteristics and energy consumption indexes of the units, the collaborative operation mode and the distribution of electricity and heat loads under multiple heat supply modes are optimized. Under the condition that the thermal load of the whole plant and the total steam intake of the units remaining unchanged, the capacity of the four units to carry electric load increases by 25~40 MW.
关键词(KeyWords):
热电联产机组;高背压;低压缸切缸;热电解耦;调峰能力;供热能力
cogeneration units;high back pressure;low pressure cylinder cutting operation;thermoelectric decoupling;peak-regulating capacity;heating capacity
基金项目(Foundation): 中国华电集团有限公司科研项目“供热机组热电解耦与提升调度灵活性的方案研究”(CHDKJ18-02-86)
作者(Author):
刘光耀,王学栋
LIU Guangyao,WANG Xuedong
参考文献(References):
- [1]戈志华,孙诗梦,万燕,等.大型汽轮机组高背压供热改造适用性分析[J].中国电机工程学报,2017,37(11):3216-3222.GE Zhihua,SUN Shimeng,WAN Yan,et al.Applicability Analysis of High Back-pressure Heating Retrofit for Largescale Steam Turbine Unit[J].Proceeding of The CSEE,2017,37(11):3216-3222.
- [2]许高秀,邓晖,房乐,等.考虑需求侧灵活性资源参与的国内外电力辅助服务市场机制研究综述[J].浙江电力,2022,41(9):3-13.XU Gaoxiu,DENG Hui,FANG Le,et al.A review of ancillary service market mechanism study at home and abroad considering flexible resources on demand side[J].Zhejiang Electric Power,2022,41(9):3-13.
- [3]韩中合,肖炜刚,安国银.大型汽轮机供热改造方案研究[J].汽轮机技术,2016,58(3):198-200.HAN Zhonghe,XIAO Weigang,AN Guoyin.Research of heating retrofitting schemes for large steam turbine[J].Turbine Technology,2016,58(3):198-200.
- [4]张猛,刘鑫屏.350 MW供热机组低压缸切除改造灵活性提升分析[J].华北电力大学学报,2019,46(3):73-79.ZHANG Meng,LIU Xinping.Flexibility improvement in heating units through low-pressure cylinder excision of 350MW heating unit[J].Journal of North China Electric Power University,2019,46(3):73-79.
- [5]刘勇,刘涛,李鹏.330 MW东方汽轮机低压缸切缸改造案例研究[J].机电工程技术,2019,48(9):237-242.LIU Yong,LIU Tao,LI Peng.Case analysis of low pressure cylinder zero output retrofit of 300 MW oriental steam turbine[J].Mechanical&Electrical Engineering Technology,2019,48(9):237-242.
- [6]成渫畏,王学栋,宋昂.首台300 MW汽轮机循环水供热改造技术与经济指标分析[J].发电与空调,2016,37(1):6-10.CHENG Xiewei,WANG Xuedong,SONG Ang.Transformation Technology and Economic Indicators Analysis of the First 300MW Steam Turbine Supplying Heat Using High-temperature Circulating Water[J].Power Generation&Air Condition,2016,37(1):6-10.
- [7]王力,包伟伟,张敏,等.350 MW超临界机组切缸技术供热特性分析[J].浙江电力,2019,38(4):51-55.WANG Li,BAO Weiwei,ZHANG Min,et al.Analysis on heating characteristics of cylinder transfer of 350 MWsupercritical unit[J].Zhejiang Electric Power,2019,38(4):51-55.
- [8]韩立,郭涛.350 MW供热机组低压缸零出力经济运行研究[J].节能技术,2019,37(1):59-61.HAN Li,GUO Tao.Economic Operation Optimization Research on Zero Output of Low Pressure Cylinder of 350MW Heat Supply Unit[J].Energy Conservation Technology,2019,37(1):59-61.
- [9]万燕,孙诗梦,戈志华,等.大型热电联产机组高背压供热改造全工况热经济分析[J].电力建设,2016,37(4):131-137.WAN Yan,SUN Shimeng,GE Zhihua,et al.ThermoEconomic Analysis of High Back Pressure Heating Retrofit for Large-Scale Cogeneration Unit under Full Condition[J].Electric Power Construction,2016,37(4):131-137.
- [10]姚纪伟,邵峰,谭锐.高背压供热机组全厂负荷优化调度的试验研究[J].汽轮机技术,2019,61(5):371-374.YAO Jiwei,SHAO Feng,TAN Rui.Experimental research on Load Optimal Scheduling of High Back Pressure Heating Steam Turbine Units[J].Turbine Technology,2019,61(5):371-374.
- [11]鹿丹.高背压供热在空冷机组的典型应用[J].节能技术,2020,38(5):422-426.LU Dan.Typical application of high back pressure heating in air cooling unit[J].Energy Conservation Technology,2020,38(5):422-426.
- [12]鄂志君,张利,杨帮宇,等.低压缸切缸实现热电联产机组热电解耦与节能的理论研究[J].汽轮机技术,2019,61(5):383-386.E Zhijun,ZHANG Li,YANG Bangyu,et al.Theoretical study on heat-electricity decoupling and energy saving of LPcylinder zero output renovation of heat and power cogeneration units[J].Turbine Technology,2019,61(5):383-386.
- [13]张钦鹏,王学栋,李峰.330 MW汽轮机组切除低压缸运行的供热能力和调峰能力分析[J].山东电力技术,2020,47(12):72-76.ZHANG Qinpeng,WANG Xuedong,LI Feng.Analysis of Heating Capacity and Peak-regulating Capacity of a 330 MWSteam Turbine Unit with Cutting Low-pressure Cylinder off Operation[J].Shandong Electric Power,2020,47(12):72-76.
- [14]戈志华,张倩,熊念,等.330 MW供热机组低压缸近零出力热力性能分析[J].化工进展,2020,39(9):3650-3657.GE Zhihua,ZHANG Qian,XIONG Nian,et al.Thermal performance analysis of 330 MW heating unit with low pressure cylinder near zero output[J].Chemical Industry and Engineering Progress,2020,39(9):3650-3657.
- [15]王洋,杨利,田德中,等.多机组、多元化供热模式下厂级热电负荷运行优化策略研究[J].汽轮机技术,2022,64(5):364-370.WANG Yang,YANG Li,TIAN Dezhong,et al.Research on optimal strategy of plant-level load operation under multi-unit and diversified heating mode[J].Turbine Technology,2022,64(5):364-370.
- [16]韩建春,孔梦婕,江建勋.热电厂多元供热优化分配方法研究[J].内蒙古电力技术,2019,37(5):22-25.HAN Jianchun,KONG Mengjie,JIANG Jiangxun.Research on optimal distribution method of multi-element heating in thermal plant[J].Inner Mongolia Electric Power,2019,37(5):22-25.
- [17]祝令凯,郑威,郭俊山,等.热负荷分配在提升全厂调峰能力的应用研究[J].电站系统工程,2019,35(6):43-49.ZHU Lingkai,ZHENG Wei,GUO Junshan,et al.Application of Heat Load Distribution in Improving Peak-shaving Ability of Plant[J].Power System Engineering,2019,35(6):43-49.
- [18]王珊,刘明,严俊杰.采用粒子群算法的热电厂热电负荷分配优化[J].西安交通大学学报,2019,53(9):159-166.WANG Shan,LIU Ming,YAN Junjie.Optimizing heat-power load distribution of thermal power plants based on particle swarm algorithm[J].Journal of Xi′an Jiaotong University,2019,53(9):159-166.
- [19]卫治廷,张敏,周兴野,等.基于黏菌算法的热电联产机组负荷优化分配[J].动力工程学报,2022,42(4):380-386.WEI Zhiting,ZHANG Min,ZHOU Xingye,et al.Optimal load distribution of cogeneration units based on slime mould algorithm[J].Journal of Chinese Society of Power Engineering,2022,42(4):380-386.
- [20]王春光,朱国栋.“以热定电”背景下热电联产机组优化分配热负荷的研究[J].能源与节能,2021(3):63-66.WANG Chunguang,ZHU Guodong.Study on optimal distribution of heat load for cogeneration units under background of"determining power by heat"[J].Energy and Conservation,2021(3):63-66.
- [21]李飞宇,黄梦莹.区域内供热机组热电负荷优化分配分析[J].节能,2022(6):1-4.LI Feiyu,HUANG Mengying.Analysis on optimal distribution of thermal and electric loads of heating units in the region[J].Energy Conservation,2022(6):1-4.
- [22]严晓生,吴振华,殷戈,等.供热机组供热域及负荷分配方式的优化研究[J].中国测试,2022,48(2):148-153.YAN Xiaosheng,WU Zhenhua,YIN Ge,et al.Research on optimization of heating region and loaddistribution mode of heating units[J].China Measurement&Testing Technology,2022,48(2):148-153.
- [23]杨志平,时斌,李晓恩,等.热负荷分配比例对抽凝-背压供热机组能耗影响[J].化工进展,2018,37(3):875-883.YANG Zhiping,SHI Bin,LI Xiao′en,et al.Impacts of heat load distribution ratio on energy consumption of extraction steam-high back pressure heating cogeneration unit[J].Chemical Industry and Engineering Progress,2018,37(3):875-883.