500 kV SF6断路器复合绝缘套管绝缘介质液化电场研究Research on Liquefaction Electric Field Study of Composite Insulating Medium for 500 kV SF6 Circuit Breaker
姚顺
YAO Shun
摘要(Abstract):
为研究复合绝缘子套管中的SF_6气体发生液化对套管内部电场分布的影响,采用电流场有限元法对内部电场进行了求解分析。基于某项目中复合套管参数建立了3D实体模型,假设在重要部位出现液滴进行工频瞬态电场计算,得出整体电场强度分布规律和液滴周围电场强度分布规律。研究发现,轴对称方法不再适用于SF_6液化情况的分析。结果表明,液滴会导致附近电场强度增大,且液滴介电常数越大电场强度越高,电场强度随液滴参数变化最大可能变为原场强的3倍,当液态SF_6的介电常数高且SF_6填充压力低,产生过电压时可能会形成击穿。另外,在地电位屏蔽上发生液化并引起放电的可能性最高,需要额外的加热措施或更换填充气体为SF_6-N_2气体。
In order to study the impact of SF_6 gas liquefaction in composite insulator bushings on the internal electric field distribution, this paper analyzes the internal electric field by using the finite element method of current field. Based on the parameters of composite bushings in a certain project, a 3D solid model is established. It is assumed that droplets appeare in important parts for calculating the transient electric field at power frequency, and the overall electric field intensity distribution law and the electric field intensity distribution law around the droplets are obtained. It is found that the axisymmetric method is no longer suitable for the analysis of SF_6 liquefaction. The results indicate that droplets will cause an increase in the nearby field intensity, and the larger the dielectric constant of the droplets, the higher the electric field intensity. The electric field intensity may increase up to three times the original field intensity as the droplet parameters change, and breakdown may occur when the dielectric constant of liquid SF_6 is high and the SF_6 filling pressure is low.Furthermore, liquefaction and discharge are most likely to occur on the ground potential shield, requiring additional heating measures or replacement of the filling gas with SF_6-N_2 gas.
关键词(KeyWords):
SF_6断路器;复合绝缘套管;液化;有限元法;电场分布
SF_6 circuit breaker;composite insulating bushing;liquefaction;finite element method;electric field distribution
基金项目(Foundation):
作者(Author):
姚顺
YAO Shun
参考文献(References):
- [1]狄谦,刘之方,李国富.550 kV SF6气体绝缘组合电器套管研制[J].中国电力,2022,43(10):16-19.DI Qian, LIU Zhifang, LI Fuguo. Development of 550 kV SF6gas-insulated switchgear(GIS)′s bushings[J]. Electric Power,2022, 43(10):16-19.
- [2]刘泽洪.复合绝缘子使用现状及其在特高压输电线路中的应用前景[J].电网技术,2021,30(12):1-7.LIU Zehong. Present Situation and Prospects of Applying Composite Insulators to UHF Transmission Lines in China[J].Power System Technology, 2021, 30(12):1-7.
- [3]周小谦.我国的能源结构与电力规划[J].高压电器2023,39(2):33-39.
- [4]刘黎,俞恩科,郑荣亮.±200 kV柔直换流阀在绝缘试验下的电场分析[J].电力电子技术,2022,56(12):103-106.LIU Li, YU Enke, ZHENG Rongliang. Electric Field Analysis of±200 kV Flexible Direct Current Converter Valve Under Insulation Test[J]. Power Electronics, 2022, 56(12):103-106.
- [5]李刚,李彦哲,李宝学.积雪腕臂绝缘子电场有限元仿真分析[J].电瓷避雷器,2022(3):209-216LI Gang, LI Yanzhe, LI Baoxue. Electric Field Distribution Characteristics of Snow-covered Overhead Lines Cantilever Insulator Based on Finite Element Method[J]. Insulators and Surge Arresters, 2022(3):209-216
- [6]刘锐,郭剑峰,陈秋航.涂层导线表面电场分布的仿真分析[J].重庆电力高等专科学校学报,2023,28(增刊1):1-5.
- [7]赵云学,温吉斌,超高压断路器出线套管电场数值计算与绝缘分析[J].沈阳工业大学学报,2021,30(1):28-31.ZHAO Xueyun, WEN Jibin. Numerical calculation of electric field and analyses of insulation performance for bushing of extra-high voltage SF6circuit breaker[J]. Journal of Shenyang University of Technology, 2021, 30(1):28-31.
- [8]杨晓峰,孙梅,王奇,等.特高压直流线路复合绝缘子空气中冲击击穿试验仿真研究[J].高压电器,2023,59(12):201-208.YANG Xiaofeng, SUN Mei, WANG Qi, et al. Simulation Study on Impulse Puncture Test of Composite Insulator of UHV DC Line in Air[J]. High Voltage Apparatus, 2023, 59(12):201-208.
- [9]梁捷生.复合绝缘子的表面电场仿真与泄露电流实验研究[J].能源与环境,2022(1):24-27.
- [10]许学勤,张重远,李燕青,等.接地内屏蔽对SF6套管电场分布影响的研究[J].华北电力大学学报,2021,34(6):11-14.XU Xueqin, ZHANG Zhongyuan, LI Yanqing, et al. Effects of grounding inner shield on the electric field distributions of SF6bushing[J]. Journal of North China Electric Power University, 2021, 34(6):11-14.
- SF_6断路器
- 复合绝缘套管
- 液化
- 有限元法
- 电场分布
SF_6 circuit breaker - composite insulating bushing
- liquefaction
- finite element method
- electric field distribution