2024 06 8-13
压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析
基金项目(Foundation):
中国能源建设集团广东省电力设计研究院有限公司科技项目“高压地下洞室关键技术研究”(EV10321W)
邮箱(Email):
DOI:
10.19929/j.cnki.nmgdljs.2024.0074
中文作者单位:
中国能源建设集团广东省电力设计研究院有限公司,广州 510663
摘要(Abstract):
针对压缩空气储能(Compressed Air Energy Storage,CAES)电站地下人工洞室设计时计算洞室埋深未充分考虑围岩承载力的问题,参考国内外相关计算方法,基于极限平衡分析法提出一种CAES电站地下人工洞室埋深的计算方法,在考虑上覆岩体重力作用、破坏面上抗剪力的情况下通过假定极限状态下的岩体破坏面建立极限平衡模型进行力学分析。同时,讨论破裂角、侧压力系数、埋深、洞径等参数对抗抬安全系数的影响。结果显示:破裂角对抗抬安全系数的影响规律与岩层侧压力系数相关,当侧压力系数一定时,抗抬安全系数随着破裂角的增大而增大;当破裂角一定时,抗抬安全系数随着侧压力系数的增大而增大。此外,抗抬安全系数随着洞室直径的增大而减小,随着洞室埋深的增大而增大。
关键词(KeyWords):
压缩空气储能;地下人工洞室;抗抬;埋深;破裂角
10 | 0 | 1015 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
[1] 文婷,陈雷,曾鹏骁,等.广东新型储能配套政策建议[J].南方能源建设,2022,9(4):70-77. WEN Ting, CHEN Lei, ZENG Pengxiao, et al. Suggestions on Supporting Policies for New Energy Storage in Guangdong[J]. Southern Energy Construction, 2022, 9(4): 70-77.
[2] 余耀,孙华,许俊斌,等.压缩空气储能技术综述[J].装备机械, 2013(1):68-74. YU Yao, SUN Hua, XU Junbin, et al. Technical review of compressed air energy storage(CAES) [J]. The Magazine on Equipment Machinery, 2013(1): 68-74.
[3] 万明忠,杨易凡,袁照威,等.大容量压缩空气储能关键技术[J]. 南方能源建设,2023,10(6):26-33. WAN Mingzhong, YANG Yifan, YUAN Zhaowei, et al. Key Technologies of Large-Scale Compressed Air Energy Storage[J]. Southern Energy Construction, 2023, 10(6): 26-33.
[4] 慈俊昌.压缩空气储能技术的发展与展望[J].现代工业经济和信息化,2024,14(9):168-171. CI Junchang. Development and Prospect of Conversion to Compressed Air Energy Storage Technology[J]. Modern Industrial Economy and Informationization, 2024, 14(9): 168-171.
[5] 蒋中明,唐栋,李鹏,等.压气储能地下储气库选型选址研究[J].南方能源建设,2019,6(3):6-16. JIANG Zhongming, TANG Dong, LI Peng, et al. Research on selection method for the types and sites of underground repository for compressed air storage[J]. Southern Energy Construction, 2019, 6(3): 6-16.
[6] 郭丁彰,尹钊,周学志,等.压缩空气储能系统储气装置研究现状与发展趋势[J].储能科学与技术,2021,10(5):1486-1493. GUO Dingzhang, YIN Zhao, ZHOU Xuezhi, et al. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493.
[7] 傅丹,胡小康,伍鹤皋,等.压气储能地下洞室密封钢衬的非线性力学响应特征[J].水力发电,2024,50(5):38-44,92. FU Dan, HU Xiaokang, WU Hegao, et al. Characteristics of Nonlinear Mechanical Response of Sealing Steel Lining in Underground High Pressure Air Storage Caverns[J]. Water Power, 2024, 50(5): 38-44, 92.
[8] 蒋中明,秦双专,唐栋.压气储能地下储气库围岩累积损伤特性数值研究[J].岩土工程学报,2020,42(2):230-238. JIANG Zhongming, QIN Shuangzhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geo-technical Engineering, 2020, 42(2): 230-238.
[9] KIM H M, PARK D, RYU D, et al. Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns[J/OL]. Engineering Geology, 60-65[2024-03-26]. https://www.docin.com/p-1410338626.html?docfrom=rrela.
[10] 蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
[11] CARRANZA-TORRES C, FOSNACHT D, HUDAK G. Geo- mechanical analysis of the stability conditions of shallow cavities for compressed air energy storage(CAES) applications [J]. Geo-mechanics and Geophysics for Geo-Energy and Geo- Resources, 2017, 3(2): 131-174.
[12] SERRANO A, OLALLA C. Tensile resistance of rock anchors [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(4): 449-474.
[13] 黄阜,杨小礼,赵炼恒,等.基于Hoek-Brown破坏准则的浅埋条形锚板抗拔力上限分析[J].岩土力学,2012,33(1):179-184,190. HUANG Fu, YANG Xiaoli, ZHAO Lianheng, et al. Upper bound solution of ultimate pullout capacity of strip plate anchor basedon Hoek-Brown failure criterion[J]. Rock and Soil Mechanics, 2012, 33(1): 179-184, 190.
[14] 匡根林,许萍.锚板抗拔理论在地下储气洞室中的应用[J].水利与建筑工程学报,2018,16(5):67-71. KUANG Genlin, XU Ping. Application of anchor plate uplift capacity theory in the underground gas storage cavern[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(5): 67-71.
[15] 徐英俊,夏才初,周舒威,等.基于极限分析上限定理的压气储能洞室抗隆起破坏准则[J].岩石力学与工程学报,2022,41(10): 1971-1980. XU Yingjun, XIA Caichu, ZHOU Shuwei, et al. Anti-uplift failure criterion of caverns for compressed air energy storage based on the upper bound theorem of limit analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1971-1980.
[16] 夏才初,赵海斌,梅松华,等.埋深对压气储能内衬洞室稳定性影响的定量分析[J].绍兴文理学院学报,2016,36(9):1-8. XIA Caichu, ZHAO Haibin, MEI Songhua, et al. Quantitative analysis of impact of cover depth on stability of a lined rock cavern for compressed air energy storage[J]. Journal of Shaoxing University, 2016, 36(9): 1-8.
[17] 孙冠华,王章星,王娇,等.压缩空气储能电站地下硐库安全埋深计算的极限平衡方法[J].土木工程学报,2023,56(增刊2): 67-77. SUN Guanhua, WANG Zhangxing, WANG Jiao, et al. Limit equilibrium method for calculating the safe burial depth of underground caverns in compressed air energy storage[J]. China Civil Engineering Journal, 2023, 56(S2): 67-77.
[18] 孙冠华,易琪,姚院峰,等.压缩空气储能电站隧道式地下硐库潜在失稳模式研究[J].岩石力学与工程学报,2024,43(1):41-49. SUN Guanhua, YI Qi, YAO Yuanfeng, et al. Study on the potential instability patterns of tunnel type underground caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 41- 49.
[19] 中华人民共和国水利部.水工隧洞设计规范:SL 279—2016[S]. 北京:中国水利水电出版社,2016.
[20] BRANDSHAUG T, CHRISTIANSON M, DAMJANAC B. Technical review of the lined rock cavern concept and design methodology: mechanical response of rock mass[R]. Minneapolis: Itasca Consulting Group, 2001.
[2] 余耀,孙华,许俊斌,等.压缩空气储能技术综述[J].装备机械, 2013(1):68-74. YU Yao, SUN Hua, XU Junbin, et al. Technical review of compressed air energy storage(CAES) [J]. The Magazine on Equipment Machinery, 2013(1): 68-74.
[3] 万明忠,杨易凡,袁照威,等.大容量压缩空气储能关键技术[J]. 南方能源建设,2023,10(6):26-33. WAN Mingzhong, YANG Yifan, YUAN Zhaowei, et al. Key Technologies of Large-Scale Compressed Air Energy Storage[J]. Southern Energy Construction, 2023, 10(6): 26-33.
[4] 慈俊昌.压缩空气储能技术的发展与展望[J].现代工业经济和信息化,2024,14(9):168-171. CI Junchang. Development and Prospect of Conversion to Compressed Air Energy Storage Technology[J]. Modern Industrial Economy and Informationization, 2024, 14(9): 168-171.
[5] 蒋中明,唐栋,李鹏,等.压气储能地下储气库选型选址研究[J].南方能源建设,2019,6(3):6-16. JIANG Zhongming, TANG Dong, LI Peng, et al. Research on selection method for the types and sites of underground repository for compressed air storage[J]. Southern Energy Construction, 2019, 6(3): 6-16.
[6] 郭丁彰,尹钊,周学志,等.压缩空气储能系统储气装置研究现状与发展趋势[J].储能科学与技术,2021,10(5):1486-1493. GUO Dingzhang, YIN Zhao, ZHOU Xuezhi, et al. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493.
[7] 傅丹,胡小康,伍鹤皋,等.压气储能地下洞室密封钢衬的非线性力学响应特征[J].水力发电,2024,50(5):38-44,92. FU Dan, HU Xiaokang, WU Hegao, et al. Characteristics of Nonlinear Mechanical Response of Sealing Steel Lining in Underground High Pressure Air Storage Caverns[J]. Water Power, 2024, 50(5): 38-44, 92.
[8] 蒋中明,秦双专,唐栋.压气储能地下储气库围岩累积损伤特性数值研究[J].岩土工程学报,2020,42(2):230-238. JIANG Zhongming, QIN Shuangzhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock caverns for compressed air energy storage[J]. Chinese Journal of Geo-technical Engineering, 2020, 42(2): 230-238.
[9] KIM H M, PARK D, RYU D, et al. Parametric sensitivity analysis of ground uplift above pressurized underground rock caverns[J/OL]. Engineering Geology, 60-65[2024-03-26]. https://www.docin.com/p-1410338626.html?docfrom=rrela.
[10] 蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
[11] CARRANZA-TORRES C, FOSNACHT D, HUDAK G. Geo- mechanical analysis of the stability conditions of shallow cavities for compressed air energy storage(CAES) applications [J]. Geo-mechanics and Geophysics for Geo-Energy and Geo- Resources, 2017, 3(2): 131-174.
[12] SERRANO A, OLALLA C. Tensile resistance of rock anchors [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(4): 449-474.
[13] 黄阜,杨小礼,赵炼恒,等.基于Hoek-Brown破坏准则的浅埋条形锚板抗拔力上限分析[J].岩土力学,2012,33(1):179-184,190. HUANG Fu, YANG Xiaoli, ZHAO Lianheng, et al. Upper bound solution of ultimate pullout capacity of strip plate anchor basedon Hoek-Brown failure criterion[J]. Rock and Soil Mechanics, 2012, 33(1): 179-184, 190.
[14] 匡根林,许萍.锚板抗拔理论在地下储气洞室中的应用[J].水利与建筑工程学报,2018,16(5):67-71. KUANG Genlin, XU Ping. Application of anchor plate uplift capacity theory in the underground gas storage cavern[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(5): 67-71.
[15] 徐英俊,夏才初,周舒威,等.基于极限分析上限定理的压气储能洞室抗隆起破坏准则[J].岩石力学与工程学报,2022,41(10): 1971-1980. XU Yingjun, XIA Caichu, ZHOU Shuwei, et al. Anti-uplift failure criterion of caverns for compressed air energy storage based on the upper bound theorem of limit analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 1971-1980.
[16] 夏才初,赵海斌,梅松华,等.埋深对压气储能内衬洞室稳定性影响的定量分析[J].绍兴文理学院学报,2016,36(9):1-8. XIA Caichu, ZHAO Haibin, MEI Songhua, et al. Quantitative analysis of impact of cover depth on stability of a lined rock cavern for compressed air energy storage[J]. Journal of Shaoxing University, 2016, 36(9): 1-8.
[17] 孙冠华,王章星,王娇,等.压缩空气储能电站地下硐库安全埋深计算的极限平衡方法[J].土木工程学报,2023,56(增刊2): 67-77. SUN Guanhua, WANG Zhangxing, WANG Jiao, et al. Limit equilibrium method for calculating the safe burial depth of underground caverns in compressed air energy storage[J]. China Civil Engineering Journal, 2023, 56(S2): 67-77.
[18] 孙冠华,易琪,姚院峰,等.压缩空气储能电站隧道式地下硐库潜在失稳模式研究[J].岩石力学与工程学报,2024,43(1):41-49. SUN Guanhua, YI Qi, YAO Yuanfeng, et al. Study on the potential instability patterns of tunnel type underground caverns for compressed air energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(1): 41- 49.
[19] 中华人民共和国水利部.水工隧洞设计规范:SL 279—2016[S]. 北京:中国水利水电出版社,2016.
[20] BRANDSHAUG T, CHRISTIANSON M, DAMJANAC B. Technical review of the lined rock cavern concept and design methodology: mechanical response of rock mass[R]. Minneapolis: Itasca Consulting Group, 2001.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0074
中图分类号:
引用信息:
[1]杨雪雯.压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析[J],2024,42(06):8-13.DOI:10.19929/j.cnki.nmgdljs.2024.0074.
基金信息:
中国能源建设集团广东省电力设计研究院有限公司科技项目“高压地下洞室关键技术研究”(EV10321W)
暂无数据