nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 05, 13-22
基于多智能体仿真的区域低碳电力系统发展形态及实现路径研究
基金项目(Foundation): 内蒙古电力(集团)有限责任公司科技项目“基于多视角以新能源为主体的新型电力系统实现路径研究”(WZGLC0708-0039)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0062
摘要:

为明晰清洁能源发展规划与电力市场化改革双重作用下电力系统的发展形态与不同阶段的转型特征,基于多智能体仿真构建了内嵌多主体市场行为、时序生产模拟、系统结构演化及低碳政策规划的中长期电力低碳转型模型,通过多情景设定与数值仿真探索了区域电力系统的低碳发展路径。算例分析表明: 2030年前,火力发电为供电主体,新能源新增装机受政策驱动效果显著。该阶段,电力系统需统筹源荷资源平衡发展,避免电源侧产能过剩造成机组利用小时数降低。2030年后,随火电退役及风电、光伏的容量扩增与成本降低,新能源参与市场可促进平均电价降低,减少火电机组利用小时数,推动区域碳排放减少。该阶段,储能等灵活性资源对平衡风光出力波动作用显著,需在日间时段充电,消纳过剩的光伏出力;在其余时段放电,以弥补风电出力不足。

Abstract:

In order to clarify the development pattern of the power system and the transformation characteristics at different stages under the dual role of clean energy development planning and the market-oriented reform of the power industry, this paper constructs a medium - and - long - term low - carbon transformation model of the power system based on multi - agent simulation, which is embedded with multi - agent market behavior, time - series production simulation, system structure evolution, and low - carbon policy planning. Through multi - scenario setting and numerical simulation, the low - carbon development path of the regional power system is explored. Case analysis shows that before 2030, thermal power generation will be the main power source, and the addition of new energy installed capacity will be significantly driven by policies. At this stage, the power system needs to coordinate the balanced development of source and load resources to avoid overcapacity on the power side, which leads to a decrease in the number of hours of unit utilization. After 2030, with the retirement of thermal power and the expansion of wind and photovoltaic capacity and cost reduction, the participation of new energy in the market can promote the reduction of average electricity prices, reduce the number of hours of thermal power units, and promote the reduction of regional carbon emissions. At this stage, flexible resources such as energy storage plays a significant role in balancing the output fluctuations of wind and photovoltaic power, which need to be charged during the daytime to consume excess photovoltaic output and discharged during other periods to make up for the insufficient output of wind power.

参考文献

[1] 魏一鸣, 余碧莹, 唐葆君, 等.中国碳达峰碳中和时间表与路线图研究[J].北京理工大学学报(社会科学版), 2022, 24(4):1-20. WEI Yiming, YU Biying, TANG Baojun, et al. Roadmap for achieving china's carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4):13-26.

[2] Luo F, Guo Y, Yao M, et al. Carbon emissions and driving forces of China's power sector:Input-output model based on the disaggregated power sector[J]. Journal of Cleaner Production, 2020, 268:121925.

[3] Liu Z, Guan D, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565):335-338.

[4] 袁家海, 张凯". 碳中和"目标下, 新型电力系统中常规煤电退出路径研究[J].中国能源, 2021(6):19-26.

[5] 舒印彪, 陈国平, 贺静波, 等.构建以新能源为主体的新型电力系统框架研究[J].中国工程科学, 2021, 23(6):61-69. SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of Chinese Academy of Engineerng, 2021, 23(6):61-69.

[6] 人民出版社.中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[M].北京:人民出版社, 2021.

[7] 张敏, 王建学, 王秀丽, 等.面向新能源消纳的调峰辅助服务市场双边交易机制与模型[J].电力自动化设备, 2021, 41(1):84-91. ZHANG Min, WANG Jianxue, WANG Xiuli, et al. Bilateral trading mechanism and model of peak regulation auxiliary service market for renewable energy accommodation[J]. Electric Power Automation Equipment, 2021, 41(1):84-91.

[8] 杜佩仁, 文福拴, 刘艳茹, 等.多元用电需求网格分析与"源网荷储"分层分区平衡模型[J].电力需求侧管理, 2021, 23(1):5-10. DU Peiren, WEN Fushuan, LIU Yanru, et al. Diversified power demand block analysis and "source-network-load-storage" hierarchical partition balance model[J]. Power Demand Side Management, 2021, 23(1):5-10.

[9] 徐楠, 赵子豪, 王永利, 等.基于设备初选的综合能源系统扩容规划研究[J].电网与清洁能源, 2022, 38(12):124-130. XU Nan, ZHAO Zihao, WANG Yongli, et al. Research on Capacity Expansion Planning of the Integrated Energy System Based on Primary Equipment Selection[J]. Power System and Clean Energy, 2022, 38(12):124-130.

[10] 魏泓屹, 卓振宇, 张宁, 等.中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J].电力系统自动化, 2022, 46(19):1-12. WEI Hongyi, ZHUO Zhenyu, ZHANG Ning, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of china[J]. Automation of Electric Power Systems, 2022, 46(19):1-12.

[11] 辛保安, 陈梅, 赵鹏, 等.碳中和目标下考虑供电安全约束的我国煤电退减路径研究[J].中国电机工程学报, 2022, 42(19):6919-6931. XIN Baoan, CHEN Mei, ZHAO Peng, et al. Research on Coal Power Generation Reduction Path Considering Power Supply Adequacy Constraints under Carbon Neutrality Target in China[J]. Proceedings of the CSEE, 2022, 42(19):6919-6931.

[12] 国家发展改革委, 国家能源局.关于印发电力体制改革配套文件的通知[EB/OL]. http://www.nea.gov.cn/2015-11/30/c_134867851.htm.

[13] 张涛, 张晶, 胡娱欧, 等.计划与市场双轨制模式下电力现货市场结算机制研究[J].广东电力, 2021, 34(2):10-18.

[14] 陈华栋.基于企业行为模拟的中国电力行业低碳转型路径研究[D].北京:清华大学, 2018.

[15] Li F G N, Strachan N. Modelling energy transitions for climate targets under landscape and actor inertia[J]. Environmental Innovation and Societal Transitions, 2017, 24:106-129.

[16] Tao Z, Moncada J A, Poncelet K, et al. Review and analysis of investment decision making algorithms in long-term agent-based electric power system simulation models[J]. Renewable and Sustainable Energy Reviews, 2021, 136:110405.

[17] Iychettira K K, Hakvoort R A, Linares P, et al. Towards a comprehensive policy for electricity from renewable energy:Designing for social welfare[J]. Applied Energy, 2017, 187:228-242.

[18] Richstein J C, Chappin E J L, de Vries L J. Cross-border electricity market effects due to price caps in an emission trading system:An agent-based approach[J]. Energy Policy, 2014, 71:139-158.

[19] Chen H, Wang C, Cai W, et al. Simulating the impact of investment preference on low-carbon transition in power sector[J]. Applied Energy, 2018, 217:440-455.

[20] 内蒙古自治区工业和信息化厅.关于做好2022年内蒙古电力多边交易市场中长期交易有关事宜的通知[EB/OL]. http://gxt.nmg.gov.cn/zwgk/fdzdgknr/tzgg/202112/t20211227_1985529.html.

[21] 李吉峰, 梁贤明, 吴俊, 等.低碳导向的区域综合能源服务市场交易机制设计[J].东北电力技术, 2023, 44(3):55-62. LI Jifeng, LIANG Xianming, WU Jun, et al. Design of Low Carbon Oriented Local Integrated Energy Services Market Trading Mechanism[J]. Northeast Electric Power Technology, 2023, 44(3):55-62.

[22] 李姚旺, 张宁, 杜尔顺, 等.基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J].中国电机工程学报, 2022, 42(8):2830-2842. LI Yaowang, ZHANG Ning, DU Ershun, et al. Mechanism Study and Benefit Analysis on Power System Low Carbon Demand Response Based on Carbon Emission Flow[J]. Proceedings of the CSEE, 2022, 42(8):2830-2842.

[23] 张沈习, 王丹阳, 程浩忠, 等.双碳目标下低碳综合能源系统规划关键技术及挑战[J].电力系统自动化, 2022, 46(8):189-207. ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al. Key Technologies and Challenges of Low-carbon Integrated Energy System Planning for Carbon Emission Peak and Carbon Neutrality[J]. Automation of Electric Power Systems, 2022, 46(8):189-207.

[24] 张运洲, 张宁, 代红才, 等.中国电力系统低碳发展分析模型构建与转型路径比较[J].中国电力, 2021, 54(3):1-11. ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model Construction and Pathways of Low-Carbon Transition of China's Power System[J]. Electric Power, 2021, 54(3):1-11.

[25] 孙志媛, 孙艳, 刘默斯, 等.考虑碳流需求响应的电力系统低碳运行策略[J].中国电力, 2023, 56(11):95-103. SUN Zhiyuan, SUN Yan, LIU Mosi, et al. Low-Carbon Operation Strategy of Power System Considering Carbon Flow Demand Response[J]. Electric Power, 2023, 56(11):95-103.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0062

中图分类号:

引用信息:

[1]赵启新1,苏雅亨1,李雨佳1等.基于多智能体仿真的区域低碳电力系统发展形态及实现路径研究[J],2024,42(05):13-22.DOI:10.19929/j.cnki.nmgdljs.2024.0062.

基金信息:

内蒙古电力(集团)有限责任公司科技项目“基于多视角以新能源为主体的新型电力系统实现路径研究”(WZGLC0708-0039)

检 索 高级检索