154 | 0 | 1089 |
下载次数 | 被引频次 | 阅读次数 |
为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least SquaresSupport Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确定短期风速预测输入量与输出量的关系。利用Tent映射和参数非线性调整策略对灰狼算法进行改进,得到了优化性能更强的改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法,并利用测试函数验证了IGWO算法能够加快迭代收敛,提高计算精度。采用IGWO算法对WLSSVM的惩罚系数和核参数进行优化,建立基于IGWO-WLSSVM的短期风功率预测模型。采用某风电场春夏两个不同季节的风功率数据进行算例分析,结果表明,所提短期风功率预测结果的平均相对误差、均方根误差和最大相对误差更小,风功率预测精度和预测结果的稳定性均优于其他方法,验证了所提方法的有效性和实用性。
Abstract:In order to improve the accuracy of short-term wind power prediction, the author proposes a short-term wind power prediction method based on an improved grey wolf algorithm optimized weighted least squares support vector machine. The embedding dimension of wind power time series is calculated using the C-C method, and the relationship between short- term wind speed prediction input and output is determined based on the calculation results. The improved Grey Wolf Optimization algorithm with stronger optimization performance is obtained by utilizing Tent mapping and parameter nonlinear adjustment strategies. The improved IGWO algorithm is validated through test functions to accelerate iterative convergence and improve computational accuracy. Using the IGWO algorithm to optimize the penalty coefficients and kernel parameters of Weighted Least Squares Support Vector Machine, a short-term wind power prediction model based on IGWO-WLSSVM is established. Using wind power data from two different seasons of a wind farm, spring and summer, a numerical analysis is conducted. The results show that the accuracy and stability of the wind power prediction results are better than other methods, verifying the effectiveness and practicality of the proposed method.
[1] 田博文,张志禹.基于多目标合作博弈的储能平滑风功率运行控制策略[J].高电压技术,2023,49(6):2546-2557. TIAN Bowen, ZHANG Zhiyu. Energy storage smooth wind power operation control strategy based on multi-objective cooperative game[J]. High Voltage Engineering, 2023, 49(6): 2546-2557.
[2] 刘雨佳,樊艳芳,白雪岩,等.基于特征交叉机制和误差补偿的风力发电功率短期预测[J].电工技术学报,2023,38(12):3277- 3288. LIU Yujia, FAN Yanfang, BAI Xueyan, et al. Short term prediction of wind power generation based on feature crossover mechanism and error compensation[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3277-3288.
[3] 沙骏,徐雨森,刘冲冲,等.基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J].中国电力,2022,55(12):61-68. SHA Jun, XU Yusen, LIU Chongchong, et al. Short term wind power prediction based on variational mode decomposition and Quantile convolution Recurrent neural network[J]. Electric Power, 2022, 55(12): 61-68.
[4] 金吉,王斌,喻敏,等.基于分形特征的自适应EEMD及其在风功率预测中的应用[J].太阳能学报,2023,44(5):416-424. JIN Ji, WANG Bin, YU Min, et al. Adaptive EEMD based on fractal features and its application in wind power prediction [J]. Acta Energiae Solaris Sinica, 2023, 44(5): 416-424.
[5] 王绍敏,王守相,赵倩宇,等.基于频域分解和精度加权集成的分布式风电功率预测方法[J].电力建设,2023,44(5):84-93. WANG Shaomin, WANG Shouxiang, ZHAO Qianyu, et al. Distributed wind power prediction method based on frequency domain decomposition and precision weighted integration[J]. Electric Power Construction, 2023, 44(5): 84-93.
[6] 王丽杰,唐宏芬,张真真,等.基于新型混合深度学习的风电机组功率预测模型开发及应用[J].电力科技与环保,2022,38(1): 72-78. WANG Lijie, TANG Hongfen, ZHANG Zhenzhen, et al. Development and application of wind power performance degradation detection based on new hybrid deep learning model[J]. Electric Power Environmental Protection, 2022, 38(1): 72-78.
[7] 谷学静,陈洪磊,孙泽贤,等.基于VMD-RL-LSTM的短期风功率预测[J].计算机仿真,2023,40(4):89-93,309. GU Xuejing, CHEN Honglei, SUN Zexian, et al. Short term wind power prediction based on VMD- RL-LSTM[J]. Computer Simulation, 2023, 40(4): 89-93, 309.
[8] 武煜昊,王永生,徐昊,等.风电输出功率预测技术研究综述[J].计算机科学与探索,2022,16(12):2653-2677. WU Yuhao, WANG Yongsheng, XU Hao, et al. Review of Research on Wind Power Output Power Prediction Technology[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(12): 2653-2677.
[9] 符杨,任子旭,魏书荣,等.基于改进LSTM-TCN模型的海上风电超短期功率预测[J].中国电机工程学报,2022,42(12):4292- 4303. FU Yang, REN Zixu, WEI Shurong, et al. Ultrashort-term power prediction of offshore wind power based on improved LSTM-TCN model[J]. Proceedings of the CSEE, 2022, 42(12): 4292-4303.
[10] 张景杨,王维庆,王海云,等.基于CEEMDAN-SAFA-LSSVM的短期风功率预测[J].计算机仿真,2021,38(8):134-138. ZHANG Jingyang, WANG Weiqing, WANG Haiyun, et al. Short term wind power prediction based on CEEMDAN-SAFA- LSSVM[J]. Computer Simulation, 2021, 38(8): 134-138.
[11] 陈海鹏,李赫,阚天洋,等.考虑风电时序特性的深度小波-时序卷积网络超短期风功率预测[J].电网技术,2023,47(4):1653- 1665. CHEN Haipeng, LI He, KAN Tianyang, et al. Deep wavelet temporal convolutional network for ultra short term wind power prediction considering wind power temporal characteristics[J]. Power System Technology, 2023, 47(4): 1653-1665.
[12] 张志浩,熊文洁,钟文,等.基于改进PSO-DE融合算法优化LSSVM的短期风功率预测[J].山东电力技术,2022,49(10):9-15. ZHANG Zhihao, XIONG Wenjie, ZHONG Wen, et al. Short term wind power prediction based on improved PSO-DE fusion algorithm optimized LSSVM[J]. Shandong Electric Power, 2022, 49(10): 9-15.
[13] 陆秋贤,马刚,涂孟夫.基于IEWT-FE-BO-LSTM模型的超短期风功率预测[J].水电能源科学,2023,41(1):217-220. LU Qiuxian, MA Gang, TU Mengfu. Ultra short term wind power prediction based on the IEWT-FE-BO-LSTM model[J]. Water Resources and Power, 2023, 41(1): 217-220.
[14] 王凯.风电场短期风速及风功率预测研究[D].昆明:昆明理工大学,2021.
[15] 郑超,钟俊,李浩.基于PSR和IGSA-RBFNN的负荷预测方法[J]. 传感器与微系统,2023,42(7):152-155. ZHENG Chao, ZHONG Jun, LI Hao. Load forecasting method based on PSR and IGSA-RBFNN[J]. Transducer and Microsystem Technologiess, 2023, 42(7): 152-155.
[16] 杨旭,王瑞,余畅文,等.基于改进灰狼优化算法的分布式能源系统优化调度[J].内蒙古电力技术,2023,41(1):26-33. YANG Xu, WANG Rui, YU Changwen, et al. Distributed energy system optimization scheduling based on improved grey wolf optimization algorithm[J]. Inner Mongolia Electric Power, 2023, 41(1): 26-33.
[17] 方权,刘闯,宋敏,等.模糊评价与PSO优化的LSSVM架空输电线路故障率预测[J].水电能源科学,2021,39(1):171-175. FANG Quan, LIU Chuang, SONG Min, et al. Fuzzy Evaluation and PSO Optimization for LSSVM Fault Rate Prediction of Overhead Transmission Lines[J]. Water Resources and Power, 2021, 39(1): 171-175.
[18] 梁伟灿,周宾,王汗青.基于LS-CSO优化MWLS-SVM的SO2排放浓度软测量建模[J].计算机应用与软件,2022,39(5):60-67. LIANG Weican, ZHOU Bin, WANG Hanqing. Optimization of MWLS-SVM based on LS-CSO for SO2 Soft Measurement Modeling of Emission Concentration[J]. Computer Applications and Software, 2022, 39(5): 60-67.
[19] 金龙,曾德智,孟可雨,等.基于GWO-LSSVM算法的海底管道腐蚀预测模型研究[J].石油与天然气化工,2022,51(2):70-76. JIN Long, ZENG Dezhi, MENG Keyu, et al. Research on a Corrosion Prediction Model for Submarine Pipelines Based on GWO-LSSVM Algorithm[J]. Chemical Engineering of Oil and Gas, 2022, 51(2): 70-76.
[20] 王金锋,杨宇琦,温栋,等.基于GA-BP和RBF的风力发电时间序列混沌预测组合模型[J].电网与清洁能源,2022,38(11):117-125. WANG Jinfeng, YANG Yuqi, WEN Dong, et al. Chaotic prediction combination model for wind power generation time series based on GA-BP and RBF[J]. Advances of Power System & Hydroelectric Engineering, 2022, 38(11): 117-125.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0017
中图分类号:
引用信息:
[1]陈琨, 丁苗, 刘炬等.基于改进灰狼算法优化WLSSVM的短期风功率预测[J].内蒙古电力技术,2024,42(02):1-7.DOI:10.19929/j.cnki.nmgdljs.2024.0017.
基金信息:
中国博士后基金面上资助项目“风-光-地热园区综合能源系统的多能互补建模与协同优化”(2021M692992)