20 | 0 | 1184 |
下载次数 | 被引频次 | 阅读次数 |
构建了电力用户碳排放监测指标体系,针对当前缺少电力用户碳排放综合评价的问题,首先对已有的电力碳排放流计算方法进行概述和总结,基于潮流追踪方法,从电力系统源侧、输电侧再到配电侧碳排放流的流向,提出电力用户碳流计算方法;其次,基于因素分析法以及电力系统自身特点,从能源、经济以及电网三大方面考虑指标体系的构成与影响因素;然后基于能源、经济和电网准则层,分别给出8个碳排放评价指标定义与计算方法,从而构成较为全面的电力用户碳排放监测指标体系,并建立基于层次分析法的综合评价模型。最后结合IEEE 33标准对配电网节点及用户数据进行测算与分析,结果验证了模型与方法的有效性。
Abstract:This paper constructs a monitoring indicator system of carbon emissions for electricity users, addressing the current lack of comprehensive evaluation of carbon emissions from electricity users. Firstly, this paper provides an overview and summary of existing methods for calculating carbon emissions for electricity, based on power flow tracking methods, and determines the method for calculating carbon flow from the power system source side, transmission side, and distribution side. Secondly, based on factor analysis and the characteristics of the power system, the composition and influence of the indicator system are considered from the three major aspects of energy, economy, and the power grid. Then, based on the energy, economic, and power grid criteria layers, eight carbon emission evaluation indicators and the calculation methods are defined, thus forming a comprehensive monitoring indicator system for carbon emissions for electricity users, and establishing a comprehensive evaluation model based on the analytic hierarchy process. Finally, in combination with the data from IEEE 33 standard distribution network nodes and users, calculations and analysis are conducted, demonstrating the effectiveness of the model and methods presented in this paper.
[1] IEA. World energy outlook 2019[R]. Paris, France:International Energy Agency, 2019.
[2] Muntasir M, Behnaz S, Mara M, et al. Exploring the nexuses between nuclear energy, renewable energy, and carbon dioxide emissions:The role of economic complexity in the G7 countries[J]. Renewable Energy, 2022, 190:664-674.
[3] 黄雨涵, 丁涛, 李雨婷, 等.碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J].中国电机工程学报, 2021, 41(增刊1):28-51. HUANG Yuhan, DING Tao, LI Yuting, et al. Overview of low carbon energy technologies in the context of carbon neutrality and implications for the development of new power systems[J]. Proceedings of the CSEE, 2021, 41(S1):28-51.
[4] 张运洲, 张宁, 代红才, 等.中国电力系统低碳发展分析模型构建与转型路径比较[J].中国电力, 2021, 54(3):1-11. ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3):1-11.
[5] 卫志农, 张思德, 孙国强, 等.基于碳交易机制的电-气互联综合能源系统低碳经济运行[J].电力系统自动化, 2016, 40(15):9-16. WEI Zhinong, ZHANG Side, SUN Guoqiang, et al. Low carbon economic operation of electricity gas integrated energy system based on carbon trading mechanism[J]. Automation of Electric Power Systems, 2016, 40(15):9-16.
[6] 黄国日, 尚楠, 梁梓杨, 等.绿色电力消费与碳交易市场的链接机制研究[J].电网技术, 2024, 48(2):668-678. HUANG Guori, SHANG Nan, LIANG Ziyang, et al. Research on the linkage mechanism between green electricity consumption and carbon trading market[J]. Power System Technology, 2024, 48(2):668-678.
[7] 武群丽, 席曼.考虑绿色证书交易的跨省区电力市场均衡分析[J]. 现代电力, 2021, 38(4):434-441. WU Qunli, XI Man. Equilibrium analysis of cross provincial electricity markets considering green certificate trading[J]. Modern Electric Power, 2021, 38(4):434-441.
[8] 吴含欣, 董树锋, 张祥龙, 等.考虑碳交易机制的含风电电力系统日前优化调度[J].电网技术, 2024, 48(1):70-80. WU Hanxin, DONG Shufeng, ZHANG Xianglong, et al. Optimization and scheduling of wind power systems with carbon trading mechanism in advance[J]. Power System Technology, 2024, 48(1):70-80.
[9] 赵文会, 高姣倩, 于金龙, 等.计及碳交易和绿色证书交易机制的发电权交易模型[J].可再生能源, 2016(8):1129-1137. ZHAO Wenhui, GAO Jiaoqian, YU Jinlong, et al. Generation rights trading model considering carbon trading and green certificate trading mechanism[J]. Renewable Energy Resources, 2016(8):1129-1137.
[10] 吴迪凡, 徐婷婷, 张楠, 等.基于碳交易和主从博弈的园区综合能源系统多主体双层优化调度方法[J].电力大数据, 2024, 27(5):9-18.
[11] WANG Caixia, LU Zongxiang, QIAO Ying.A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems[J]. IEEE Transactions on Power Systems, 2013, 28(1):236-245.
[12] KANG Chongqing, ZHOU Tianrui, CHEN Qixin, et al.Carbon emission flow from generation to demand:a network-based model[J].IEEE Transactions on Smart Grid, 2015, 6(5):2386-2394.
[13] CHENG Yaohua, ZHANG Ning, WANG Yi, et al.Modeling carbon emission flow in multiple energy systems[J]. IEEE Transactions on Smart Grid, 2019, 10(4):3562-3574.
[14] 周天睿, 康重庆, 徐乾耀, 等.电力系统碳排放流分析理论初探[J].电力系统自动化, 2012, 36(7):38-43, 85. ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Preliminary study on the theory of carbon emission flow analysis in power system[J]. Automation of Electric Power Systems, 2012, 36(7):38-43, 85.
[15] 康重庆, 程耀华, 孙彦龙, 等.电力系统碳排放流的递推算法[J]. 电力系统自动化, 2017, 41(18):10-16. KANG Chongqing, CHENG Yaohua, SUN Yanlong, et al. Recursive algorithm for carbon emission in power system[J]. Automation of Electric Power Systems, 2017, 41(18):10-16.
[16] 周天睿, 康重庆, 徐乾耀, 等.电力系统碳排放流的计算方法初探[J].电力系统自动化, 2012, 36(11):44-49. ZHOU Tianrui, KANG Chongqing, XU Qianyao, et al. Discussion on calculation method of carbon emission in power system[J]. Automation of Electric Power Systems, 2012, 36(11):44-49.
[17] 汪超群, 陈懿, 文福拴, 等.电力系统碳排放流理论改进与完善[J].电网技术, 2022, 46(5):1683-1693. WANG Chaoqun, CHEN Yi, WEN Fushuan, et al. Some problems and improvement of carbon emission flow theory in power system[J]. Power System Technology, 2022, 46(5):1683-1693.
[18] 黄蓉.基于牛顿-拉夫逊法和P-Q分解法的配网潮流计算联合迭策略[J].自动化应用, 2023, 64(22):55-57. HUANG Rong. Joint stacking strategy for power flow calculation in distribution network based on Newton Raphson method and P-Q decomposition method[J]. Automation Application, 2023, 64(22):55-57.
[19] Fatemi, Masoud S, Abedi, et al. Introducing a novel DC power flow method with reactive power considerations[J]. IEEE Transactions on Power Systems:A Publication of the Power Engineering Society, 2015, 30(6):3012-3023.
[20] 胡昱楠.网损分摊法在输电网中的应用研究[D].北京:华北电力大学, 2022.
[21] Digs A A, Chen C Y. Power System Loss Divider[J]. IEEE Transactions on Power Systems, 2020, 35(4):3286-3289.
[22] Dong W, Chen C, Fang X, et al. Enhanced integrated energy system planning through unified model coupling multiple energy and carbon emission flows[J]. Energy, 2024, 307:132799.
[23] Wei Y, Chunlei Z, Jinwei S, et al. Data-driven smart grid carbon emission control methods using graph-based power flow computing[J]. Journal of Computational Methods in Sciences and Engineering, 2024, 24(45):3245-3259.
[24] Mahony TO. Decomposition of Ireland's carbon emissions from 1990 to 2010:An extends Kaya identity[J]. Energy Policy, 2013, 59(4):573-581.
[25] 国涓, 刘荣军, 孙萍.中国二氧化碳排放的影响因素:基于区域的实证研究[J].数学的实践与认识, 2013, 43(11):59-72. GUO Juan, LIU Rongjun, SUN Ping. Influencing factors of carbon dioxide emissions in China:an empirical study based on regions[J]. Mathematics in Practice and Theory, 2013, 43(11):59-72.
[26] Lin-Sea Lau, Chee-Keong Choog, Yoke-Kee Eng. Carbon dioxide emission, institutional quality, and economic growth:Empirical evidence in Malaysia[J]. Renewable Energy, 2014, 68:276-281.
[27] 万家豪, 苏浩, 冯冬涵, 等.计及源荷匹配的风光互补特性分析与评价[J].电网技术, 2020, 44(9):3219-3226. WAN Jiahao, SU Hao, FENG Donghan, et al. Analysis and evaluation of wind solar complementary characteristics considering source load matching[J]. Power System Technology, 2020, 44(9):3219-3226.
[28] 杨冬锋, 冉子旭, 姜超.面向规模化风电消纳的电-气-氢能源互联系统协同规划[J].东北电力大学学报, 2023, 43(3):91-100. YANG Dongfeng, RAN Zixu, JIANG Chao. Collaborative Planning of Electricity-Gas-Hydrogen Energy Interconnection System for Large-Scale Wind Power Consumption[J]. Journal of Northeast Dianli University(Natural Science Edition), 2023, 43(3):91-100.
[29] 罗洋.基于AHP-熵权法的综合能源系统多指标评价研究[D].北京:华北电力大学, 2022.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0066
中图分类号:
引用信息:
[1]继雅,刘嘉丽,张伟等.电力用户碳排放指标评价体系与方法[J],2024,42(05):44-51.DOI:10.19929/j.cnki.nmgdljs.2024.0066.
基金信息:
内蒙古电力(集团)有限责任公司内蒙古电力经济技术研究院分公司科技项目“基于全域碳足迹的电力用户智慧观碳决策支持技术研究”(2022-24)