nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 04, 80-86
分布式调相机对大规模新能源直流送端系统的稳定特性影响
基金项目(Foundation): 内蒙古自治区“双碳”科技创新重大示范工程“揭榜挂帅”项目“新型电力系统 ‘网源荷储’ 关键调度技术研究及其示范应用”(2022JBGS0044);内蒙古电力(集团)有限责任公司科技项目“分布式调相机群对蒙西高比例新能源电网外送消纳能力影响研究”(2023-5-29)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0057
摘要:

针对大规模新能源接入直流送端系统,典型直流故障引起的系统暂态过电压和频率稳定问题,分析分布式调相机接入直流送端新能源场站对系统的稳定特性影响。首先,介绍分布式调相机无功调压和转动惯量作用原理;其次,介绍新能源机组过电压保护原理及直流送端系统典型故障引发暂态过电压的原因,并分析分布式调相机对系统强度即直流短路比、新能源直流外送系统暂态过电压及动态频率稳定水平的影响。最后,通过时域仿真验证分布式调相机在提升送端直流输电系统强度、暂态电压水平和频率稳定性中的作用。

Abstract:

In response to the transient overvoltage and frequency stability issues caused by typical HVDC faults in an HVDC sending-end system with large-scale new energy, the author makes an analysis of the impact of distributed synchronous condensers connecting to the new energy stations on the stability characteristics of the system. Firstly, the principles of reactive power regulation and the moment of inertia of distributed synchronous condensers are introduced. Secondly, the principle of overvoltage protection for new energy units and the causes of transient overvoltage caused by typical faults in the HVDC sending-end system are introduced, and the impact of distributed synchronous condensers on system strength, i.e. DC short circuit ratio, transient overvoltage and dynamic frequency stability level in the HVDC sending- end system of new energy is analyzed. Finally, the role of distributed synchronous condensers in enhancing the system strength, transient voltage level, and frequency stability of the HVDC transmission sending-end system is verified through time-domain simulation.

参考文献

[1] 郭晨,王碧阳,李立,等.特高压直流送端系统的运行约束及新能源消纳挑战研究[J].智慧电力,2021,4(5):56-62. GUO Chen, WANG Biyang, LI Li, et al. Power system operation constraint and new energy consumption challenge of UHV DC transmission system[J]. Smart Power, 2021, 4(5):56-62.

[2] 李晖,刘栋,姚丹阳.面向碳达峰碳中和目标的我国电力系统发展研判[J].中国电机工程学报,2021,41(18):6245-6259. LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18):6245-6259.

[3] 辛保安,郭铭群,王绍武,等.适应大规模新能源友好送出的直流输电技术与工程实践[J].电力系统自动化,2021,45(22):1-8. XIN Baoan, GUO Mingqun, WANG Shaowu, et al. Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22):1-8.

[4] 邹建凯,韦延方.基于改进拟牛顿法的柔性直流系统潮流算法[J].机电工程技术,2023,52(2):47-50. ZOU Jiankai, WEI Yanfang. Power Flow Algorithm of Flexible DC System Based on Modified Quasi-Newton Method[J]. Mechanical&Electrical Engineering Technology, 2023, 52(2):47-50.

[5] 肖超,韩伟,李琼林,等.基于虚拟电阻的高压直流换相失败期间送端电网暂态过电压抑制方法[J].电力系统保护与控制,2021,49(23):122-129. XIAO Chao, HAN Wei, LI Qionglin, et al. A suppression method for overvoltage of a sending end grid caused by commutation failure based on virtual resistance[J]. Power System Protetion and Control, 2021, 49(23):122-129.

[6] BADAL F R, DAS P, SARKER S K, et al. A survey on control issues in renewable energy integration and microgrid[J]. Protection and Control of Modern Power Systems, 2019, 4(1):87-113.

[7] 乔丽,王航,谢剑,等.同步调相机对分层接入特高压直流输电系统的暂态过电压抑制作用研究[J].中国电力,2020,53(3):43-51. QIAO Li, WANG Hang, XIE Jian, et al. Research on the transient overvoltage suppression effect of synchronous phase-shifting cameras on layered access to HVDC transmission systems[J]. Electric Power, 2020, 53(3):43-51.

[8] 索之闻,刘建琴,蒋维勇,等.大规模新能源直流外送系统调相机配置研究[J].电力自动化设备,2019,39(9):124-129. SUO Zhiwen, LIU Jianqin, JIANG Weiyong, et al. Research on synchronous condenser configuration of large-scale renewable energy DC transmission system[J]. Electric Power Automation Equipment, 2019, 39(9):124-129.

[9] 张冬清,徐玲玲,李彦龙,等.基于调相机的LCC-HVDC换流站无功优化与双层协调策略研究[J].南方能源建设,2023,10(5):24-33. ZHANG Dongqing, XU Lingling, LI Yanlong, et al. LCC-HVDC Converter Station Reactive Power Optimization and Two-Layer Coordination Strategy Research Based on Synchronous Sondenser[J]. Southern Energy Construction, 2023, 10(5):24-33.

[10] 张冬清,张国华,徐玲铃,等.调相机在电力系统中的发展应用与动态特性[J/OL].南方能源建设,1-11[2024-08-14]. https://doi.org/10.16516/j.gedi.issn2095-8676.2023.00.111.

[11] 张旭航,陈思远,曹炜.同步调相机对系统频率特性的影响研究[J].电工技术,2019,1(11):45-49. ZHANG Xuhang, CHEN Siyuan, CAO Wei. Study on Influence of Synchronous Condensers on System Frequency Characteristics[J]. Electric Engineering, 2019, 1(11):45-49.

[12] 刘其辉,王志明.双馈式变速恒频风力发电机的无功功率机制及特性研究[J].中国电机工程学报,2011,31(3):82-89. LIU Qihui, WANG Zhiming. Reactive Power Generation Mechanism&Characteristic of Doubly Fed Variable Speed Constant Frequency Wind Power Generator[J]. Proceedings of the CSEE, 2011, 31(3):82-89.

[13] 王顺超,吴金城.应对风电机组高压脱网的继电保护策略[J].电力系统保护与控制,2014,42(8):146-152. WANG Shunchao, WU Jincheng. Relay protection methods for preventing disconnection of wind turbines from grid due to voltage rising[J]. Power System Protection and Control, 2014, 42(8):146-152.

[14] 韩民晓,文俊,徐永海.高压直流输电原理与运行[M].北京:机械工业出版社,2019.

[15] 全国风力机械标准化技术委员会.风力发电机组故障穿越能力测试规程:GB/T 36995-2018[S].北京:中国标准出版社,2018.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0057

中图分类号:

引用信息:

[1]闫桂红1,2,李丹丹1,2,刘小恺1,2等.分布式调相机对大规模新能源直流送端系统的稳定特性影响[J],2024,42(04):80-86.DOI:10.19929/j.cnki.nmgdljs.2024.0057.

基金信息:

内蒙古自治区“双碳”科技创新重大示范工程“揭榜挂帅”项目“新型电力系统 ‘网源荷储’ 关键调度技术研究及其示范应用”(2022JBGS0044);内蒙古电力(集团)有限责任公司科技项目“分布式调相机群对蒙西高比例新能源电网外送消纳能力影响研究”(2023-5-29)

检 索 高级检索