nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, 39-48
基于改进多目标灰狼优化算法的光伏制氢储能系统配置优化
基金项目(Foundation): 中国电力工程顾问集团有限公司科技项目“光伏水电解制氢技术研究与应用示范”(DG3-A03-2022)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2025.0007
摘要:

针对购买、维护光伏发电和储能设备会产生大量经济性成本,同时在部分天气情况下不充足的光照条件给光伏制氢储能系统的运行带来挑战的问题,提出了一种基于改进的多目标灰狼优化(Improved Grey Wolf Optimization,IGWO)算法的光伏制氢储能系统配置优化方法。对系统进行建模,增设两种储能设备以保证系统的稳定运行。IGWO算法使用混沌理论进行种群的初始化,使种群更彻底地搜索解空间;对狼群位置的更新使用莱维轨迹进行扰动以扩大搜索范围,使算法不易陷入局部最优点;使用贪婪策略更新个体的位置。以降低光伏制氢储能系统的经济性成本、弃光惩罚成本和购电成本为优化目标,使用该优化算法求解系统各组件的配置容量。算例分析结果表明,IGWO算法相较于原始方法可更加有效地降低光伏制氢储能系统的经济性成本、弃光率和购电率。

Abstract:

Due to the significant economic costs associated with purchasing and maintaining photovoltaic power generation and energy storage equipment, as well as the challenges posed by insufficient sunlight under certain weather for the operation of PV hydrogen storage systems, this paper proposes an optimization method for the configuration of PV hydrogen storage systems based on a multi -objective improved grey wolf optimization(IGWO) algorithm. The system is modeled, and two types of energy storage devices are added to ensure stable operation of the system. The proposed IGWO algorithm uses chaos theory for population initialization, allowing for a more thorough search of the solution space. Lévy trajectory is used to disturb the update of the wolf pack positions to expand the search range, making it less likely for the algorithm to get trapped in local optima. A greedy strategy is used to update the positions of individuals. Taking the economic cost, penalty cost for curtailment, and electricity cost for purchase of PV hydrogen storage system as optimization objectives, the proposed optimization algorithm is used to solve the configuration capacity of the system components, aiming to minimize these costs. The results indicate that the IGWO algorithm is more effective than the original method in reducing the economic costs, curtailment, and purchasing costs of the PV hydrogen storage system.

参考文献

[1] 张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报,2022,42(8):2806-2819. ZHANG Zhigang, KANG Chongqing. Challenges and Prospects of Building a New Power System under the Carbon Neutrality Goal [J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819.

[2] 呼斯乐,于源,王渊,等.考虑灵活性分析的典型光伏日出力率曲线提取方法[J].内蒙古电力技术,2024,42(3):20-27. Husile, YU Yuan, WANG Yuan, et al. Method for Extracting Typical PV Daily Output Curves Considering Flexibility Analysis[J]. Inner Mongolia Electric Power, 2024, 42(3): 20-27.

[3] 朱振涛,吴丘驰,张焱,等.考虑容量优化的光伏制氢盐穴储氢系统经济性分析[J].电力建设,2024,45(4):26-36. ZHU Zhengtao, WU Qiuchi, ZHANG Yan, et al. Economic Analysis of a Photovoltaic Hydrogen Production and Salt Cavern Hydrogen Storage System Considering Capacity Optimization[J]. Electric Power Construction, 2024, 45(4): 26-36.

[4] GÖTZ M, Lefebvre J, MÖRS F, et al. Renewable Power-to-Gas: A technolo gical and economic review[J]. Renewable Energy, 2016(85): 1371-1390.

[5] 郑博,白章,袁宇,等.多类型电解协同的风光互补制氢系统与容量优化[J].中国电机工程学报,2022,42(23):8486-8496. ZHENG Bo, BAI Zhang, YUAN Yu, et al. Wind-Solar Complementary Hydrogen Production System with Multiple Types of Electrolyzers and Capacity Optimization[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496.

[6] Lata-Garcia J, Jurado F, Fernández Ramírez L. M, et al. Optimal hydrogenetic turbine location and techno-economic analysis of a hybrid system based on photovoltaic/hydrogen/ battery[J]. Energy, 2018(159): 611-620.

[7] Marino C, Nucara A, Panzerera M. F., et al. Energetic and economic analysis of a standalone photovoltaic system with hydrogen storage[J]. Renewable Energy, 2019, 142: 316-329.

[8] 孟军磊,林玉杰,孙德明,等.基于改进SSA的风光氢储综合供电系统配置优化[J].上海电力大学学报,2023,39(6):557-562. MENG Junlei, LIN Yujie, SUN Deming, et al. Optimization of Configuration for Integrated Power Supply System with Wind, Solar, and Hydrogen Storage Based on Improved SSA[J]. Journal of Shanghai University of Electric Power, 2023, 39(6): 557-562.

[9] 胡臻达,姜文瑾,张林垚,等.基于改进猫群算法的氢储能容量优化配置[J].中国电力,2023,56(10):33-42. HU Zhenda, JIANG Wenjin, ZHANG Linyao, et al. Optimization of Hydrogen Storage Capacity Configuration Based on Improved Cat Swarm Algorithm[J]. Electric Power, 2023, 56(10): 33-42.

[10] 林炜,刘天羽.基于场景生成的超级电容-氢混合储能容量优化配置[J/OL].电测与仪表,1-10[2024-01-23].http://kns.cnki.net/kcms/detail/23.1202.TH.20240611.1609.006.html.

[11] 潘泽铎,钟炜.风光互补发电制氢储能系统多目标优化研究[J]. 天津理工大学学报,2024,40(1):37-43. PAN Zeduo, ZHONG Wei. Multi-Objective Optimization Study of a Wind-Solar Complementary Power Generation and Hydrogen Storage System[J]. Journal of Tianjin University of Technology, 2024, 40(1): 37-43.

[12] 张秀琦,胡学超,李勇.风电机组设备可靠性分析及提升方法研究[J].内蒙古电力技术,2024,42(3):8-12. ZHANG Xiuqi, HU Xuechao, LI Yong. Research on Equipment Reliability Analysis and Improvement Methods for Wind Turbine[J]. Inner Mongolia Electric Power, 2024, 42(3): 8-12.

[13] GORDON J M, FASQUELLE T, NADAL E, et al. Providing large-scale electricity demand with photovoltaics and molten-salt storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110261.

[14] 周天沛,孙伟.风光互补发电系统混合储能单元的容量优化设计[J].太阳能学报,2015,36(3):756-762. ZHOU Tianpei, SUN Wei. Capacity Optimization Design of Hybrid Energy Storage Units in Wind-Solar Complementary Power Generation Systems[J]. Acta Energiae Solaris Sinica, 2015, 36(3): 756-762.

[15] 李永毅,王子晗,张磊,等.风-光-氢-燃气轮机一体化氢电耦合系统容量配置优化[J].中国电机工程学报,2025,45(2):489-502. LI Yongyi, WANG Zihan, ZHANG Lei, et al. Capacity Optimization of Wind-Solar-Hydrogen-Gas Turbine Integrated Hydrogen-Electric Coupling System[J]. Proceedings of the CSEE, 2025, 45(2): 489-502.

[16] 张开鹏,杨雪梅,张宏甜,等.考虑“光伏-储能”耦合参与调峰的配电网氢储能优化配置[J].电网与清洁能源,2023,39(10):95- 103,112. ZHANG Kaipeng, YANG Xuemei, ZHANG Hongtian, et al. Optimization of Hydrogen Energy Storage Configuration in a Distribution Network Considering Photovoltaic-Storage Coupling for Peak Shaving[J]. Power System and Clean Energy, 2023, 39(10): 95-103, 112.

[17] 孟中强,李飞,张豪,等.基于随机潮流与双层经济性指标的微电网储能优化配置[J].电气应用,2023,42(8):92-99. MENG Zhongqiang, LI Fei, ZHANG Hao, et al. Optimization of Energy Storage Configuration in Microgrids Based on Stochastic Power Flow and Bi-level Economic Indicators[J]. Electrical Application, 2023, 42(8): 92-99.

[18] 尹璐,张海涛,印青.基于自适应粒子群的精细化有序用电决策方法[J].机电工程技术,2023,52(6):207-210. YIN Lu, ZHANG Haitao, YIN Qing. Refined Ordered Electricity Consumption Decision-Making Method Based on Adaptive Particle Swarm Optimization[J]. Mechanical and Electrical Engineering Technology, 2023, 52(6): 207-210.

[19] 孙璐瑶,陈来军,熊宇峰,等.考虑光热集热单元的氢储能热电联供综合能源系统容量优化配置[J].电力自动化设备,2023(12): 70-76. SUN Luyao, CHEN Laijun, XIONG Yufeng, et al. Capacity Optimization of an Integrated Energy System with Hydrogen Energy Storage and Combined Heat and Power Considering Solar Thermal Collectors[J]. Electric Power Automation Equipment. 2023(12): 70-76.

[20] 刘昭睿,王凯,王新建,等.提升末端区域电网供电能力的调控方案及稳控策略研究[J].内蒙古电力技术,2024,42(3):52-60. LIU Zhaorui, WANG Kai, WANG Xinjian, et al. Research on Regulation Scheme and Stability Control Strategy for Enhancing Power Supply Capacity of End-Region Power Grid [J]. Inner Mongolia Electric Power, 2024, 42(3): 52-60.

[21] 刘宇,张玉魁,王荣,等.锂离子电池储能设备安全风险分析及管控措施[J].内蒙古电力技术,2024,42(3):1-7. LIU Yu, ZHANG Yukui, WANG Rong, et al. Analysis and Control Measures for Safety Risks of Lithium-ion Battery Energy Storage Equipments[J]. Inner Mongolia Electric Power, 2024, 42(3): 1-7.

[22] 陈琨,丁苗,刘炬,等.基于改进灰狼算法优化WLSSVM的短期风功率预测[J].内蒙古电力技术,2024,42(2):1-7. CHEN Kun, DING Miao, LIU Ju, et al. Short Term Wind Power Prediction Based on WLSSVM Optimized by Improved Grey Wolf Optimization Algorithm[J]. Inner Mongolia Electric Power, 2024, 42(2): 1-7.

[23] 陈丽娜,樊艳芳,李广,等.基于斯塔克尔伯格博弈的光伏制氢系统能量优化管理策略[J].现代电力,2024,41(3):507-516. CHEN Lina, FAN Yanfang, LI Guang, et al. Energy Optimization Management Strategy for Photovoltaic Hydrogen Production Systems Based on Stackelberg Game[J]. Modern Electric Power. 2024, 41(3): 507-516.

[24] 齐海涛,刘咄,赵东澳,等.边防哨所风光耦合制氢系统的配置优化[J].北京航空航天大学学报,2024,50(10):3032-3041. QI Haitao, LIU Duo, ZHAO Dongao, et al. Configuration Optimization of Wind-Solar Coupled Hydrogen Production System for Border Defense Outposts [J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(10): 3032- 3041.

[25] 孔令国.风光氢综合能源系统优化配置与协调控制策略研究[D]. 北京:华北电力大学,2017.

[26] Blasco X, Herrero J M, Sanchis J, et al. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization[J]. Information Sciences An International Journal, 2008, 178(20): 3908-3924.

[27] 徐林,阮新波,张步涵,等.风光蓄互补发电系统容量的改进优化配置方法[J].中国电机工程学报,2012,32(25):88-98,14. XU Lin, RUAN Xinbo, ZHANG Buhan, et al. An Improved Optimal Sizing Method for Wind-solar-battery Hybrid Power System[J]. Proceedings of the CSEE, 2012, 32(25): 88-98, 14.

[28] 曹蕃,郭婷婷,殷爱鸣,等.风光氢混合发电系统设计与能量管理策略研究进展[J].分布式能源,2021,6(4):1-14. CAO Fan, GUO Tingting, YIN Aiming, et al. Research Progress on Optimal Sizing and Energy Management Strategy of Wind-Solar-Hydrogen Hybrid Energy Systems[J]. Distributed Energy, 2021, 6(4): 1-14.

[29] Gonzalez A, Riba J R, Rius A, et al. Optimal sizing of a hybrid grid-connected photovoltaic and wind power system[J]. Applied Energy, 2015, 154(15): 752-762.

[30] 董伟强. 风光氢蓄混合发电系统的配置及其电池管理研究[D]. 杭州:浙江大学,2017.

[31] Abla K, Chokri B S, Djamila R, et al. Sizing methodology for hybrid photovoltaic/wind/hydrogen/battery integrated to energy management strategy for pumping system[J]. Energy, 2018, 153: 743-762.

[32] 林沛昕.面向园区最优用能的分布式光伏及储能容量配置方法[J].东北电力大学学报,2024,44(5):50-56. LIN Peixin. Capacity Configuration Method for Distributed Photovoltaics and Energy Storage Aimed at Optimal Energy Utilization in Campuses. Journal of Northeast Electric Power University, 2024, 44(5): 50-56.

[33] 张贝贝.基于Simulink的集中型馈线自动化控制策略仿真系统设计[J].东北电力技术,2024,45(9):41-45,49. ZHANG Beibei. Design of a Simulation System for Centralized Feeder Automation Control Strategies Based on Simulink[J]. Dortheast Electric Power Technology, 2024, 45(9): 41-45, 49.

[34] 刘姝,赵闯,邹文广,等.基于MILP的园区微电网风光储协调优化配置[J].东北电力技术,2024,45(12):5-10. LIU Shu, ZHAO Chuang, ZOU Wenguang, et al. Coordinated Optimal Configuration of Wind-Solar Storage in Campus Microgrids Based on MILP. Northeast Electric Power Technology, 2024, 45(12): 5-10.

[35] 王凯平,姜明磊,孙圣轩,等.支撑新能源电力系统电压稳定的分布式调相机优化配置研究[J].东北电力大学学报,2024,44(5): 112-120. WANG Kaiping, JIANG Minglei, SUN Shengxuan, et al. Research on the Optimal Configuration of Distributed Phase Shifters Supporting Voltage Stability in New Energy Power Systems[J]. Journal of Northeast Electric Power University, 2024, 44(5): 112-120.

[36] 薛旭东,刘晓慧,薛琳婧.基于最优化理论的称重传感系统弹性元体结构优化[J].机电工程技术,2023,52(8):49-53. XUE Xudong, LIU Xiaohui, XUE Linjing. Optimization of the Elastic Element Structure of a Weighing Sensor System Based on Optimization Theory[J]. Mechanical and Electrical Engineering Technology, 2023, 52(8): 49-53.

[37] 严俊,张函,尹冬晖.基于随机权重的粒子群算法的串补配置优化[J].云南电力技术,2023,51(5):17-20,25. YAN Jun, ZHANG Han, YIN Donghui. Optimization of Series Compensation Configuration Based on a Particle Swarm Algorithm with Random Weights[J]. Yunnan Electric Power Technology, 2023, 51(5): 17-20, 25.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2025.0007

中图分类号:

引用信息:

[1]许龙虎1,刘少鹏2,卢皓天1.基于改进多目标灰狼优化算法的光伏制氢储能系统配置优化[J],2025,43(01):39-48.DOI:10.19929/j.cnki.nmgdljs.2025.0007.

基金信息:

中国电力工程顾问集团有限公司科技项目“光伏水电解制氢技术研究与应用示范”(DG3-A03-2022)

检 索 高级检索