52 | 0 | 3855 |
下载次数 | 被引频次 | 阅读次数 |
针对大型光伏直流并网汇集系统双极故障后短路电流上升快、幅值高,在系统中附加限流设备或改进换流器拓扑限制直流短路电流,又会额外增加建设成本的问题,提出一种模块化多电平换流器(Modular Multilevel Converter,MMC)两阶段限流控制,首阶段保障限流控制快速性,次阶段增加MMC限流程度,同时结合光伏直流汇集系统结构提出相应的控制和保护协调方案。首先分析了短路电流影响因素,进一步提出两阶段限流控制实现方法,探讨了限流控制对系统影响并给出系统的限流控制与保护系统协调流程,最后在±30 kV/30 MW的光伏直流并网汇集系统中对限流控制进行仿真验证。仿真结果表明,所提两级式限流控制能迅速投入并显著降低故障电流及桥臂电流,控制直流断路器设计成本,降低换流器闭锁风险。
Abstract:In response to the problem of rapid rise and high amplitude of short-circuit current after bipolar faults in large- scale PV DC grid-connected pooling systems, and additional cost of adding current-limiting equipment or improved converter topology to limit the DC short-circuit current in the system, this paper proposes a modular multilevel converter(MMC) with a two-stage current-limiting control. The author proposes a two-stage current limiting control strategy of modular multilevel converter. The first stage guarantees the speed of current limiting control, and the second stage increases the degree of MMC current limiting. At the same time, the corresponding control and protection coordination schemes are proposed based on the structure of the photovoltaic DC collection system. Firstly, the influencing factors of short-circuit current are analyzed, and then a two-stage current-limiting control method is proposed to explore the influence of current-limiting control on the system and the coordinated process between current-limiting control and protection system is provided. Finally, the current-limiting control is simulated and verified in a ±30 kV/30 MW PV DC grid-connected collection system. The simulation results show that the proposed two-stage current-limiting control can be quickly put into operation and significantly reduce the fault current and bridge arm current, control the design cost of DCCB, and reduce the risk of converter blocking.
[1] 鞠昌斌,王环,孟姗姗,等.大功率、高变比光伏高压直流并网变换器[J].太阳能学报,2018,39(2):572-582. JU Changbin, WANG Huan, MENG Shanshan, et al. High-power, high-ratio photovoltaic high-voltage DC grid-connected converter[J]. Acta Energiae Solaris Sinica, 2018, 39(2):572-582.
[2] 贾科,朱正轩,杨哲,等.基于改进的Adaboost算法的光伏发电机组智能孤岛检测方法[J].电网技术,2019,43(4):1227-1235. JIA Ke, ZHU Zhengxuan, YANG Zhe, et al. Intelligent islanding detection method for grid-connected photovoltaic power system based on improved adaboost algorithm[J].Power System Technology, 2019, 43(4):1227-1235.
[3] 奚鑫泽,黄文焘,邰能灵.大型光伏电站直流升压汇集接入系统建模与数字仿真[J].上海交通大学学报,2018,52(10):1178-1188. XI Xinze, HUANG Wentao, TAI Nengling. Modeling and digital simulation of DC step-up collection system for large-scale photovoltaic power plants[J]. Journal of Shanghai Jiaotong University, 2018, 52(10):1178-1188.
[4] WANG Y, WEN W, ZHANG C, et al. Reactor Sizing Criterion for the Continuous Operation of Meshed HB-MMC-Based MTDC System Under DC Faults[J]. IEEE Transactions on Industry Applications, 2018, 54(5):5408-5416.
[5] LI C, GOLE A M, ZHAO C. A Fast DC Fault Detection Method Using DC Reactor Voltages in HVdc Grids[J]. IEEE Transactions on Power Delivery, 2018, 33(5):2254-2264.
[6] WANG W, BARNES M, MARJANOVIC O, et al. Impact of DC Breaker Systems on Multiterminal VSC-HVDC Stability[J]. IEEE Transactions on Power Delivery, 2016, 31(2):769-779.
[7] LYU C, TAI N, JIN Z, et al. Research on application of superconducting fault current limiter in MMC‐MTDC[J]. The Journal of Engineering, 2017, 2017(13):1307-1311.
[8] YE L, JUENGST K P. Modeling and simulation of high temperature resistive superconducting fault current limiters[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2):839-842.
[9] LI S, ZHANG J, XU J, et al. A new topology for current limiting HVDC circuit breaker[J]. International Journal of Electrical Power&Energy Systems, 2019, 104:933-942.
[10] KONTOS E, TSOLARIDIS G, TEODORESCU R, et al. On DC Fault Dynamics of MMC-Based HVdc Connections[J]. IEEE Transactions on Power Delivery, 2018, 33(1):497-507.
[11] WANG S, LI C, ADEUYI O D, et al. Coordination of MMCs With Hybrid DC Circuit Breakers for HVDC Grid Protection[J]. IEEE Transactions on Power Delivery, 2019, 34(1):11-22.
[12] LI X, SONG Q, LIU W, et al. Protection of Nonpermanent Faults on DC Overhead Lines in MMC-Based HVDC Systems[J]. IEEE Transactions on Power Delivery, 2013, 28(1):483-490.
[13] 张建坡,赵成勇.MMC-HVDC直流侧故障特性仿真分析[J].电力自动化设备,2014,34(7):32-37. ZHANG Jianpo, ZHAO Chengyong. Simulation and analysis of DC-link fault characteristics for MMC-HVDC[J]. Electric Power Automation Equipment, 2014, 34(7):32-37.
[14] 杨海倩,王玮,荆龙,等.MMC-HVDC系统直流侧故障暂态特性分析[J].电网技术,2016,40(1):40-46. YANG Haiqian, WANG Wei, JING Long, et al. Analysis on Transient Characteristic of DC Transmission Line Fault in MMC Based HVDC Transmission System[J]. Power System Technology, 2016, 40(1):40-46.
[15] 李再男,贾科,刘鑫,等.半桥型MMC直流侧故障的两级主动限流控制[J].中国电机工程学报,2023,43(21):8400-8411. LI Zainan, JIA Ke, LIU Xin, et al. Two-stage Active Current-limiting Control for Half-bridge MMC DC-side Faults[J]. Proceedings of the CSEE, 2023, 43(21):8400-8411.
[16] 陈新岗,张金京,马志鹏,等.基于MMC的光伏直流升压并网系统故障分析及限流控制策略[J].电力系统保护与控制,2023,51(22):145-154. CHEN Xingang, ZHANG Jinjing, MA Zhipeng, et al. MMC-based fault analysis and current-limiting control strategy for a photovoltaic DC boost grid-connected system[J]. Power System Protection and Control, 2023, 51(22):145-154.
[17] 朱瑞,贾科,施志明,等.基于主动注入的光伏直流并网系统早期故障定位方法[J].电网技术,2021,45(1):67-75. ZHU Rui, JIA Ke, SHI Zhiming, et al. Incipient Fault Location for PV Collection System Based on Active Injection[J]. Power System Technology, 2021, 45(1):67-75.
[18] 赵威,陆海,赵雄.配电网故障行波定位综述[J].云南电力技术, 2024,52(1):46-49. ZHAO Wei, LU Hai, ZHAO Xiong. A Survey on Fault Traveling Wave Location in Distribution Network[J]. Yunnan Electric Power, 2024, 52(1):46-49.
[19] 姜绍艳,李京平,蔡志平.智能分布式加电压-时间型双策略就地故障判别方法[J].南方能源建设,2020,7(增刊1):48-52. JIANG Shaoyan, LI Jingping, CAI Zhiping. Intelligent Distributed Voltage-time Dual Strategy Local Fault Identification Method[J]. Southern Energy Construction, 2020, 7(S1):48-52.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0050
中图分类号:
引用信息:
[1]李猛,陈想,和敬涵等.基于大型光伏直流升压汇集系统的限流控制研究[J],2024,42(04):23-31.DOI:10.19929/j.cnki.nmgdljs.2024.0050.
基金信息:
国家自然科学基金面上项目“海上风电柔性低频输电线路保护原理研究”(52377070)