nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, 94-100
基于自学习寻优对燃煤锅炉燃烧优化的试验研究
基金项目(Foundation): 四川广安发电有限责任公司科技项目“超低排放背景下锅炉燃烧控制与脱硝深度优化综合提效研究”
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0046
摘要:

为了使燃烧模型更准确地反演锅炉中煤粉的燃尽状态, 基于遗传算法改进的神经网络模型, 结合锅炉尾部烟道CO在线监测系统, 构建基于自学习寻优的锅炉燃烧优化模型, 建立了CO体积分数与锅炉热效率的关系。 根据自学习寻优结果, 对燃煤锅炉的出口氧量、配风方式和燃尽风(SOFA风)进行调整。 研究发现, 将出口氧量由3.0%调整至2.5%和3.5%, 锅炉热效率分别提高了0.53%和0.49%; 将锅炉的配风方式调整为缩腰配风和正宝塔配风方式, 锅炉热效率分别提高了0.57%和0.73%; 将锅炉A、B两侧SOFA风风门开度由87.4%调整为86.7%,锅炉热效率提高了0.71%,降低了热损失。

Abstract:

In order to enhance the accuracy of the combustion model in reversing the burnout of pulverized coal in the boiler, the author constructs a boiler combustion optimization model based on self - learning optimization. The model is achieved by combining the improved neural network model of genetic algorithm with the CO online monitoring system. Besides, a relationship between CO volume fraction and boiler thermal efficiency is established. The outlet oxygen, air distribution methods, and burnout air(SOFA air) are adjusted based on self - learning optimization results. It is found that adjusting the export oxygen content from 3.0% to 2.5% and 3.5% increases the boiler thermal efficiency by 0.53% and 0.49%, respectively. Adjusting the air distribution method of the boiler to waist reduction and positive tower air distribution resulted in an increase in the boiler′s thermal efficiency by 0.57% and 0.73%, respectively. The opening of the SOFA air distribution doors on both of A an B sides is adjusted from 87.4% to 86.7%, resulting in a 0.71% increase in boiler thermal efficiency, which reduces heat loss.

参考文献

[1] Wang P.T., Wei Y.M., Yang B., et al. Carbon capture and storage in China's power sector: Optimal planning under the 2℃ constrain[J]. Applied Energy, 2020, 263: 114694.

[2] Lee B.H., Bae Y.H., Cho S.H., et al. Comprehensive technical review for fundamental characteristics and application of NH3 co-firing with coal[J]. Chemical Engineering Journal, 2023, 474: 145587.

[3] 王智浩,赵斌,张子晗,等.300 MWCFB锅炉热效率与污染物排放对比试验研究[J].东北电力大学学报,2022,42(2):62-69. WANG Zhihao, ZHAO Bin, ZHANG Zihan, et al. Experimental study on efficiency and pollutant emission of a 300 MW circulating fluidized bed boiler[J]. Journal of Northeast Electric Power University, 2022, 42(2): 62-69.

[4] 谭厚章,周上坤,杨文俊,等.氨燃料经济性分析及煤氨混燃研究进展[J].中国电机工程学报,2023,43(1):181-190. TAN Houzhang, ZHOU Shangkun, YANG Wenjun, et al. Economic analysis of ammonia and research progress of coal- ammonia co- firing[J]. Proceedings of the CSEE, 2023, 43(1): 181-190.

[5] 王金星,吴盈盈,陈江涛.燃煤系统协同联动运行控制技术探讨[J].内蒙古电力技术,2023,41(6):3-9. WANG Jinxing, WU Yingying, CHEN Jiangtao. Discussion of Cooperative Operation Control Technology of Coal-Fired System[J]. Inner Mongolia Electric Power, 2023, 41(6): 3-9.

[6] 谭厚章,王肖肖,周必茂,等.煤粉气流床气化炉预热燃烧特性及NOx排放试验研究[J].煤炭学报,2023,48(11):4192-4204. TAN Houzhang, WANG Xiaoxiao, ZHOU Bimao, et al. Experimental study on preheating combustion characteristics and NOx emission of pulverized coal based on an entrained- flow gasifier[J]. Journal of China Coal Society, 2023, 48(11): 4192-4204.

[7] 吕清刚,朱书骏,朱建国,等.煤粉预热燃烧技术研发进展[J].中国电机工程学报,2022,42(18):6535-6546. LYU Qinggang, ZHU Shujun, ZHU Jianguo, et al. Research and Development on Preheated Combustion of Pulverized Coal[J]. Proceedings of the CSEE, 2022, 42(18): 6535-6546.

[8] 黄曦平,王艳红.1000 MW超超临界燃煤锅炉高比例掺混生物质对炉内传热特性的影响[J].东北电力大学学报,2023,43(6):94- 100. HUANG Xiping, WANG Yanhong. Effect of High Proportion Biomass Blending on Heat Transfer Characteristic in 1000 MW Ultra Supercritical Coal FiredBoiler[J]. Journal of Northeast Electric Power University, 2023, 43(6): 94-100.

[9] 关风一,宋金礼,赵阳,等.油改煤锅炉燃烧优化研究[J].东北电力技术,2023,44(3):45-48,51. GUAN Fengyi, SONG Jinli, ZHAO Yang, et al. Research on Optimization of Oil- to- Coal Boiler Combustion[J]. Northeast Electric Power Technology, 2023, 44(3): 45-48, 51.

[10] Wu X.Y., Tang Z.H., Cao S.X. A hybrid least square support vector machine for boiler efficiency prediction[J]. IEEE, 2017: 1202-1205.

[11] Xu X.Y., Chen Q., Ren M.F., et al. Combustion optimization for coal fired power plant boilers based on improved distributed ELM and distributed PSO[J]. Energies, 2019, 12(6): 1036.

[12] 尹凌霄,王明春,尚强.基于支持向量机和粒子群算法的电站锅炉燃烧优化[J].锅炉技术,2014,45(4):13-17. YIN Lingxiao, WANG Mingchun, SHANG Qiang. The combustion optimization of a coal- fired boiler based on support vector machine and particle swarm algorithm[J]. Boiler Technology, 2014, 45(4): 13-17.

[13] 牛鹏坤,洪辉,王炜哲.基于改进遗传算法的电站锅炉效率优化[J].热能动力工程,2020,35(3):111-115. NIU Pengkun, HONG Hui, WANG Weizhe. Optimization of boiler combustion efficiency based on improved genetic algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 111-115.

[14] 孙巧玲,沈炯,李益国.基于遗传算法的燃煤电站锅炉整体燃烧优化方法研究[J].热能动力工程,2004,19(1):85-88. SUN Qiaoling, SHEN Jiong, LI Yiguo. Genetic algorithm-based integrated optimization of a combustion process for a coal- fired utility boiler[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(1): 85-88.

[15] 曹庆才,高德欣,刘芳.基于神经网络与遗传算法的锅炉燃烧优化系统设计[J].自动化技术与应用,2015,35(6):11-14,33. CAO Qingcai, GAO Dexin, LIU Fang. Design of boiler combustion optimization system based on neural network and genetic algorithm[J]. Techniques of Automation and Applications, 2015, 35(6): 11-14, 33.

[16] 陈波,曹歌瀚,黄亚继,等.基于机器学习的燃煤锅炉燃烧效率在线计算[J].洁净煤技术,2021,27(4):174-179. CHEN Bo, CAO Gehan, HUANG Yaji, et al. Online calculation of coal- fired boiler combustion efficiency based on machine learning[J]. Clean Coal Technology, 2021, 27(4): 174-179.

[17] 曹歌瀚,黄亚继,徐文韬,等.基于机器学习的燃煤锅炉分工况建模和燃烧优化[J].锅炉技术,2023,54(5):41-47. CAO Gehan, HUANG Yaji, XU Wentao, et al. Modeling and online combustion optimization of coal- fired boiler under different working conditions based on machine learning[J]. Boiler Technology, 2023, 54(5):41-47.

[18] 付颜,潘蕾,王钱超.基于机器学习的锅炉送风控制系统仿真及优化[J].工程热物理学报,43(7):1777-1782. FU Yan, PAN Lei, WANG Qianchao. Simulation and optimization of boiler air supply control system based on machine learning[J]. Journal of Engineering Thermophysics, 43(7): 1777-1782.

[19] 梁中荣,蓝茂蔚,郑国,等.基于最小二乘支持向量机的电站锅炉高效率低NOx的多目标优化研究[J].发电技术,2023,44(6): 810-816. LIANG Zhongrong, LAN Maowei, ZHENG Guo, et al. Study on multi-objective optimization of high-efficiency and low-NOx emissions of power station boilers based on least squares support vector machines[J]. Power Generation Technology, 2023, 44(6): 810-816.

[20] 魏向国,汤泽煜,张明法.基于改进粒子群算法的火电机组锅炉燃烧多目标优化[J].机电信息,2023(18):24-27. WEI Xiangguo, TANG Zeyu, ZHANG Mingfa. Multi-objective optimization of combustion in thermal power unit boilers based on improved particle swarm optimization algorithm[J]. Mechanical and Electrical Information, 2023(18): 24-27.

[21] 孙雪丽,李辉,谭玉菲,等.基于全年在线监测数据的燃煤电厂超低排放特征分析[J].电力科技与环保,2021,37(3):39-46. SUN Xueli, LI Hui, TAN Yufei, et al. Emission characteristics of ultra- low emission coal- fired power plants by analyzing data from CEMS[J]. Electric Power Environmental Protection, 2021, 37(3): 39-46.

[22] 张文祥,徐文韬,黄亚继,等.基于数据驱动660 MW循环流化床锅炉多目标燃烧优化[J].电力科技与环保,2024,40(2):97-107. ZHANG Wenxiang, XU Wentao, HUANG Yaji, et al. Multi- objective combustion optimization for 660 MW circulating fluidized bed boiler based on data-driven approach[J]. Electric Power Environmental Protection, 2024, 40(2):97-107.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0046

中图分类号:

引用信息:

[1]彭昭雄1,周健1,刘兵兵1等.基于自学习寻优对燃煤锅炉燃烧优化的试验研究[J].内蒙古电力技术,2024,42(03):94-100.DOI:10.19929/j.cnki.nmgdljs.2024.0046.

基金信息:

四川广安发电有限责任公司科技项目“超低排放背景下锅炉燃烧控制与脱硝深度优化综合提效研究”

检 索 高级检索