51 | 0 | 83 |
下载次数 | 被引频次 | 阅读次数 |
为优化储能电站电池充、放电运行维护策略,对储能电站用磷酸铁锂电池在恒功率P、2P、4P下进行充、放电性能试验,拆解后对电极材料进行扫描电镜形貌测试、X射线衍射测试、电感耦合等离子光谱测试。结果表明,随着充、放电功率增大,电池完成充、放电循环时间变短,内阻变大,电池有效充、放电容量变小; 4P功率下电池正极的磷酸铁锂颗粒有明显的裂纹,负极表面的Fe、P、S等元素质量分数偏高;循环充、放电到一定次数后,电池开始老化,出现FePO4相;大功率充、放电使负极材料中锂元素质量分数升高,正极锂元素质量分数与功率呈反比关系,加速电池的老化。储能电站实际运维中,对电池宜采用低功率的充、放电策略,可有效提高电池使用寿命及安全可靠性。
Abstract:In order to optimize the operation and maintenance strategy of battery charging and discharging in energy storage power stations, the charging and discharging performance of lithium iron phosphate battery used in energy storage power station are tested under constant power P, 2P and 4P. After disassembly, the electrode materials are tested by scanning electron microscopy, X-ray diffraction and inductively coupled plasma spectrum. The results show that with the increase of charging and discharging power, the cycle time of charging and discharging becomes shorter, the internal resistance becomes larger, and the effective charging and discharging capacity of the battery becomes smaller. At 4P power, there are obvious cracks in the lithium iron phosphate particles in the positive electrode of the battery, and the mass fraction of Fe, P, S and other elements on the surface of the negative electrode is relatively high. After a certain number of cycles of charging and discharging, the battery begins to age and FePO4 phase appears. High power charging and discharging can increase the mass fraction of lithium in the negative electrode material, while the mass fraction of lithium in the positive electrode is inversely proportional to power, which accelerates the aging of the battery. In the actual operation and maintenance of an energy storage power station, low- power charging and discharging strategies should be adopted for the battery, which can effectively improve the service life and safety reliability of the battery.
[1] 郭桐,刘涛,方德宇,等.锂离子电池健康评估研究进展[J].电池工业,2023,27(1):48-54. GUO Tong, LIU Tao, FANG Deyu, et al. Research progress in health assessment of lithium-ion batteries[J]. Chinese Battery Industry, 2023, 27(1): 48-54.
[2] 李肖辉,陈北海,古领先,等.锂离子电池健康状态评估方法研究进展[J].电源技术,2021,45(6):818-822. LI Xiaohui, CHEN Beihai, GU Lingxian, et al. Research progress of health assessment methods for lithium ion batteries [J]. Chinese Journal of Power Sources, 2021, 45(6): 818-822.
[3] 宋爽,李福,唐西胜.锂离子电池安全状态评估研究进展[J].储能科学与技术,2023,12(11):3545-3555. SONG Shuang, LI Fu, TANG Xisheng. Research progress on the safety-state assessment of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3545-3555.
[4] 官亦标,沈进冉,刘家亮,等.以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J].储能科学与技术,2023,12(9): 2946-2953. GUAN Yibiao, SHEN Jinran, LIU Jialiang, et al. Comprehensive performance evaluation standards for energy storage lithium-ion batteries guided by safe and high-quality applications[J]. Energy Storage Science and Technology, 2023, 12(9): 2946-2953.
[5] 金阳,薛志业,姜欣,等.储能锂离子电站安全防护研究进展[J].郑州大学学报(理学版),2023,55(3):1-13. JIN Yang, XUE Zhiye, JIANG Xin, et al. Research Progress of Safety Protection of Lithium-ion Energy Storage Power Station [J]. Journal of Zhengzhou University(Natural Science Edition), 2023, 55(3): 1-13.
[6] 费陈,赵亮,王云恪,等.基于XGBoost算法的锂离子电池健康状态估算[J].浙江电力,2022,41(5):14-21. FEI Chen, ZHAO Liang, WANG Yunke, et al. SOH Estimation of Li-ion Battery Based on XGBoost Algorithm[J]. Zhejiang Electric Power, 2022, 41(5): 14-21.
[7] 何可欣,马速良,马壮,等.储能技术发展态势及政策环境分析[J]. 分布式能源,2021,6(6):45-52. HE Kexin, MA Suliang, MA Zhuang, et al. Energy Storage Technology Development Trend and Policy Environment Analysis[J]. Distributed Energy, 2021, 6(6): 45-52.
[8] 唐勇.锂离子电池健康状态估计与内短路故障诊断研究[D].南京: 南京理工大学,2021.
[9] 彭鹏,林达,汪湘晋,等.基于局部异常因子的锂离子电池储能系统故障诊断[J].浙江电力,2023,42(5):11-17. PENG Peng, LIN Da, WANG Xiangjin, et al. Fault diagnosis of lithium-ion battery energy storage systems based on local outlier factor[J]. Zhejiang Electric Power, 2023, 42(5): 11-17.
[10] 高洋.三元材料锂离子电池老化诊断、评估与建模方法[D].北京: 北京交通大学,2019.
[11] 赵显赫,耿光超,林达,等.基于数据驱动的锂离子电池健康状态评估综述[J].浙江电力,2021,40(7):65-73. ZHAO Xianhe, GENG Guangchao, LIN Da, et al. Review of data-driven state of health estimation for lithium-ion battery [J]. Zhejiang Electric Power, 2021, 40(7): 65-73.
[12] 黎冲,王成辉,王高,等.基于数据驱动的锂离子电池健康状态估计技术[J].中国电力,2022,55(8):73-86,95. LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data- Driven[J]. Electric Power, 2022, 55(8): 73-86, 95.
[13] 郭东亮,陶风波,孙磊,等.储能电站用磷酸铁锂电池循环老化机理研究[J].电源技术,2020,44(11):1591-1593. GUO Dongliang, TAO Fengbo, SUN Lei, et al. Research on cycle aging mechanism of lithium iron phosphate battery for energy storage power station[J]. Chinese Journal of Power Sources, 2020, 44(11): 1591-1593.
[14] 李学斌,赵号,陈世龙.预制舱式磷酸铁锂电池储能电站能耗计算研究[J].南方能源建设,2023,10(2):71-77. LI Xuebin, ZHAO Hao, CHEN Shilong. Research on energy consumption calculation of prefabricated cabin type lithium iron phosphate battery energy storage power station[J]. Southern Energy Construction, 2023, 10(2): 71-77.
[15] 周钰,郝为瀚.面向数据中心的储能系统应用研究[J].南方能源建设,2021,8(3):58-62. ZHOU Yu, HAO Weihan. Research on application of energy storage system for data center[J]. Southern Energy Construction, 2021, 8(3): 58-62.
[16] 李征泰.柔性锂离子电池的失效分析及新型结构研究[D].成都: 电子科技大学,2022.
[17] 潘明九,兰洲,余智芳,等.考虑储能与线路电热特性的电力系统过载优化控制[J].浙江电力,2023,42(9):99-107. PAN Mingjiu, LAN Zhou, YU Zhifang, et al. Optimal control of power system overload considering energy storage and electro-thermal characteristics of transmission lines[J]. Zhejiang Electric Power, 2023, 42(9): 99-107.
[18] 李明,袁园.锂离子电池安全性隔膜的研究进展[J].电源技术, 2022,46(2):123-126. LI Ming, YUAN Yuan. Research progress of safe separator for lithium-ion battery[J]. Chinese Journal of Power Sources, 2022, 46(2): 123-126.
[19] 张世超,沈泽宇,陆盈盈.金属锂电池的热失控与安全性研究进展[J].物理化学学报,2021,37(1):55-72. ZHANG Shichao, SHEN Zeyu, LU Yingying. Research progress of thermal runaway and safety for lithium metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 55-72.
[20] 汪茹,刘志康,严超,等.高安全锂离子电池复合集流体的界面强化[J].物理化学学报,2023,39(2):81-92. WANG Ru, LIU Zhikang, YAN Chao, et al. Strengthening of composite current collectors for high-Safety lithium-Ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(2): 81-92.
[21] 李芳芳,谈亚军,杨红艳,等.锂离子电池过放后性能的研究[J]. 电池工业,2022,26(1):30-35. LI Fangfang, TAN Yajun, YANG Hongyan, et al. Study on performance of lithium ion battery after overdischarge[J]. Chinese Battery Industry, 2022, 26(1): 30-35.
[22] 谢运成.基于电化学机理模型的锂离子电池产热及老化特性研究[D].重庆:重庆大学,2021.
[23] 郭鹏宇,王智睿,钱磊.储能电站磷酸铁锂电池预制舱火灾事故分析[J].电力安全技术,2019,21(12):26-30. GUO Pengyu, WANG Zhirui, QIAN Lei. Analysis of a fire accident in the prefabricated cabin of lithium iron phosphate battery in an energy storage power station[J]. Electric Safety Technology, 2019, 21(12): 26-30.
[24] 王绥军.基于负极界面副反应的锂离子电池性能失效研究[D].天津:天津大学,2020.
[25] 孔令丽,张克军,蔡嘉兴,等.高电压锂离子电池间歇式循环失效分析及改善[J].储能科学与技术,2020,9(3):964-968. KONG Lingli, ZHANG Kejun, CAI Jiaxing, et al. Analysis and improvement of interval cycle life for high voltage lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 964-968.
[26] 胡雪.锂离子电池碳基负极材料增材制造及其电化学性能研究[D].吉林:吉林大学,2021.
[27] 黄国勇,董曦,杜建委,等.锂离子电池高压电解液[J].化学进展, 2021,33(5):855-867. HUANG Guoyong, DONG Xi, DU Jianwei, et al. High-Voltage electrolyte for lithium-ion batteries[J]. Progress in Chemistry, 2021, 33(5): 855-867.
[28] 方长顺.液流电池中碳布对电解液流动影响的试验及模拟[J].分布式能源,2022,7(5):69-74. FANG Changshun. Experiment and Simulation of Effect of Carbon Cloth on Electrolyte Flow in Flow Battery[J]. Distributed Energy, 2022, 7(5): 69-74.
[29] 杨玺,刘士诚,周炜钦,等.锂离子电池建模技术研究[J].分布式能源,2021,6(4):77-82. YANG Xi, LIU Shicheng, ZHOU Weiqin, et al. Research on Modeling Technology of Lithium Battery[J]. Distributed Energy, 2021, 6(4): 77-82.
[30] 高啸天,匡俊,楚攀,等.化学电源及其在储能领域的应用[J].南方能源建设,2020,7(4):1-10. GAO Xiaotian, KUANG Jun, CHU Pan, et al. Chemical Power Sources and Their Applications in Energy Storage Fields[J]. Southern Energy Construction, 2020, 7(4): 1-10.
[31] 王志,唐云峰,熊雄,等.锂离子电池储能系统建模与控制策略研究[J].电网与清洁能源,2015,31(4):119-123,131. WANG Zhi, TANG Yunfeng, XIONG Xiong, et al. Li-Ion Battery Energy Storage System Modeling and Control Strategy [J]. Advances of Power System & Hydroelectric Engineering, 2015, 31(4): 119-123, 131.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0020
中图分类号:
引用信息:
[1]王焕伟, 张若朋, 薛守洪等.电化学储能电站用磷酸铁锂电池电性能及电极材料理化性能分析[J].内蒙古电力技术,2024,42(02):24-29.DOI:10.19929/j.cnki.nmgdljs.2024.0020.
基金信息:
内蒙古电力(集团)有限责任公司科技项目“电池入网检测及安全评估系统化研究”(2022-02)