nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 06, 48-55
一种面向DGA不平衡数据的变压器缺陷识别方法
基金项目(Foundation): 内蒙古自治区自然科学基金项目“变压器油复合抗氧化剂的筛选及其电化学检测方法研究”(2021BS05005);内蒙古电力科学研究院青年科技人员支持计划项目“蒙西地区充油变压器运行状态智能监测及预警技术研究”(QK-2024-1-02)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0079
摘要:

针对变压器缺陷样本存在不平衡性,现有诊断方法适用性不足的问题,提出一种面向油中溶解气体分析(Dissolved GasAnalysis,DGA)不平衡数据的变压器缺陷识别方法。首先,基于内蒙古西部地区部分电厂送检油样的DGA分析,重新划分5种变压器状态类型,并通过增加状态特征增大其差距;然后,构建综合考虑检测气体含量、无编码比值、三比值的输入特征,对智能诊断模型进行训练和测试;最后,选用改进动态多种群粒子群优化算法优化极限学习机神经网络参数,通过对未定义类型样本进行分析,验证方法的有效性。结果表明,本方法适用于DGA不平衡数据集,能够对变压器运行状态及缺陷进行准确识别。

Abstract:

In response to the problem of imbalanced transformer defect samples and insufficient applicability of the existing diagnostic methods, a transformer defect recognition method for Dissolved Gas Analysis(DGA) imbalanced data in oil is proposed. Firstly, based on DGA analysis of oil samples sent by some power plants in western region of Inner Mongolia, five types of transformer states are reclassified and the differences are increased by adding state features. Then, input features considering gas content detection, uncoded ratio, and triration are constructed to train and test the intelligent diagnostic model. Finally, the improved dynamic multiple Particle Swarm Optimization(PSO) algorithm is selected to optimize the parameters of the Extreme Learning Machine(ELM) neural network. By analyzing samples of undefined types, the effectiveness of the method is verified. The results show that this method is applicable to DGA imbalanced datasets and can accurately identify the operating status and defects of transformers.

参考文献

[1] 齐波,王一鸣,张鹏,等.基于自决策主动纠偏的电力变压器油色谱诊断模型[J].高电压技术,2020,46(1):23-32. QI Bo, WANG Yiming, ZHANG Peng, et al. Oil Chromatography Diagnosis Model of Power Transformer Based on Self-decision Active Rectification[J]. High Voltage Engineering, 2020, 46(1): 23- 32.

[2] 李长云,杨静雨,连鸿松,等.基于ICEEMDAN-IPSO-ELM的硅油溶解气体浓度组合预测方法[J].高电压技术,2023,49(9):3898- 3909. LI Changyun, YANG Jingyu, LIAN Hongsong, et al. Combined Prediction Method of Dissolved Gas Concentration of Silicone Oil Based on ICEEMDAN-IPSO-ELM[J]. High Voltage Engineering, 2023, 49(9): 3898-3909.

[3] 齐波,王一鸣,张鹏,等.面向变压器油色谱趋势预测的深度递归信念网络[J].电网技术,2019,43(6):1892-1900. QI Bo, WANG Yiming, ZHANG Peng, et al. Deep Recurrent Belief Network Model for Trend Prediction of Transformer Oil Chromatography Data[J]. Power System Technology, 2019, 43(6): 1892-1900.

[4] 龚泽威一,饶桐,王钢,等.基于改进粒子群优化XGBoost的变压器故障诊断方法[J].高压电器,2023,59(8):61-69. GONG Zeweiyi, RAO Tong, WANG Gang, et al. Fault Diagnosis Method of Transformer Based on Improved Particle Swarm Optimization XGBoost[J]. High Voltage Apparatus, 2023, 59(8): 61-69.

[5] 向小民,盛刘宇,刘谦,等.基于特征选择和ICOA-LSSVM的变压器故障诊断[J/OL].电气工程学报,1-9[2023-10-20].https://link.cnki.net/urlid/10.1289.TM.20231027.1033.002.

[6] 吴广宁,袁海满,高波,等.基于特征评估与核主元分析的电力变压器故障诊断[J].高电压技术,2017,43(8):2533-2540. WU Guangning, YUAN Haiman, GAO Bo, et al. Fault Diagnosis of Power Transformer Based on Feature Evaluation and Kernel Principal Component Analysis[J]. High Voltage Engineering, 2017, 43(8): 2533-2540.

[7] 荣智海,齐波,李成榕,等.面向变压器油中溶解气体分析的组合DBN诊断方法[J].电网技术,2019,43(10):3800-3808. RONG Zhihai, QI Bo, LI Chengrong, et al. Combined DBN Diagnosis Method for Dissolved Gas Analysis of Power Transformer Oil[J]. Power System Technology, 2019, 43(10): 3800-3808.

[8] 崔宇,侯慧娟,苏磊,等.考虑不平衡案例样本的电力变压器故障诊断方法[J].高电压技术,2020,46(1):33-41. CUI Yu, HOU Huijuan, SU Lei, et al. Fault Diagnosis Method for Power Transformer Considering Imbalanced Class Distribution[J]. High Voltage Engineering, 2020, 46(1): 33-41.

[9] 电力行业电力变压器标准化技术委员会.变压器油中溶解气体分析和判断导则:DL/T 722—2014[S].北京:中国电力出版社,2015.

[10] HUANG G B, WANG D H, LAN Y. Extreme Learning Machines: A Survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.

[11] 肖兵,张雅婷,刘颂凯,等.基于PCC和KELM的电力系统暂态稳定分析方法[J].内蒙古电力技术,2023,41(3):57-62. XIAO Bing, ZHANG Yating, LIU Songkai, et al. Transient Stability Analysis Method of Power Systems Based on PCC and KELM[J]. Inner Mongolia Electric Power, 2023, 41(3): 57-62.

[12] 王艳,李伟,赵洪山,等.基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法[J].电力系统保护与控制,2023,51(4):32- 42. WANG Yan, LI Wei, ZHAO Hongshan, et al. Transformer DGA Fault Diagnosis Method Based on DBN-SSAELM[J]. Power System Protection and Control, 2023, 51(4): 32-42.

[13] 高云龙,闫鹏.基于多种群粒子群算法和布谷鸟搜索的联合寻优算法[J].控制与决策,2016,31(4):601-608. GAO Yunlong, YAN Peng. Unified Optimization Based on Multi-swarm PSO Algorithm and Cuckoo Search Algorithm[J]. Control and Decision, 2016, 31(4): 601-608.

[14] 仝秋娟,李萌,赵岂.基于分类思想的改进粒子群优化算法[J].现代电子技术,2019,42(19):11-14. TONG Qiujuan, LI Meng, ZHAO Qi. An Improved Particle Swarm Optimization Algorithm Based on Classification[J]. Modern Electronics Technique, 2019, 42(19): 11-14.

[15] 王宇嘉,聂善坤,肖闪丽.基于动态多种群的粒子群优化算法[J]. 电子科技,2017,30(7):9-12,16. WANG Yujia, NIE Shankun, XIAO Shanli. A dynamic Multi- group Particle Swarm Optimization[J]. Electronic Science and Technology, 2017, 30(7): 9-12, 16.

[16] 奚金明,郑荣艳.基于自适应权重和莱维飞行的改进海鸥优化算法[J].计算机系统应用,2023,32(12):171-179. XI Jinming, ZHENG Rongyan. Improved Seagull Optimization Algorithm Based on Adaptive Weight and Levy Flight[J]. Computer System Application, 2023, 32(12): 171-179.

[17] 国珍,仝棣.基于莱维飞行粒子群算法的异步电机效率优化[J/OL]. 计算 机仿 真,1-7[2023-10-20].https://link.cnki.net/urlid/11.3724.TP.20231108.1637.022.

[18] 唐可心,梁晓磊,周文峰,等.具有重组学习和混合变异的动态多种群粒子群优化算法[J].控制与决策,2021,36(12):2871-2880. TANG Kexin, LIANG Xiaolei, ZHOU Wenfeng, et al. Dynamic Multi-population Particle Swarm Optimization Algorithm with Recombined Learning and Hybrid Mutation[J]. Control and Decision, 2021, 36(12): 2871-2880.

[19] 侯维春,袁志鹏.混合动力汽车参数的动态重组多子群粒子群优化[J].机械设计与制造,2023(10):59-64. HOU Weichun, YUAN Zhipeng. Hybrid Electric Vehicle Parameters Optimization Based on Dynamic Regroup Multi-Population PSO Algorithm[J]. Machinery Design & Manufacture, 2023(10): 59-64.

[20] 罗澍忻,陆秋瑜,靳冰洁,等.考虑相关因素的长短时记忆网络短期负荷预测方法[J].机电工程技术,2019,48(12):126-129. LUO Shuxin, LU Qiuyu, JIN Bingjie, et al. Short-term Load Forecasting Based on Long Short-term Memory Network Considering Related Factors[J]. Mechanical & Electrical Engineering Technology, 2019, 48(12): 126-129.

[21] 梁晓磊,张孟镝,周文峰,等.种群熵启动反向学习的动态多种群粒子群算法[J].智能计算机与应用,2024,14(2):9-17. LIANG Xiaolei, ZHANG Mengdi, ZHOU Wenfeng, et al. Dynamic Multi-swarm Particle Swarm Optimization Using Population Entropy to Start Reverse Learning[J]. Intelligent Computer and Applications, 2024, 14(2): 9-17.

[22] 郑雅洲,刘万平,黄东.一种基于注意力机制的BERT-CNN-GRU检测方法[J/OL].计算机工程,1-11[2023-10-20].https://doi.org/10.19678/j.issn.1000-3428.0068479.

[23] 刘超,刘洋,韩刚,等.改进Dempster-Shafer证据与概率模型集成的变压器故障诊断[J/OL].电力系统及其自动化学报,1-12[2023-10-20].https://doi.org/10.19635/j.cnki.csu-epsa.001395.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0079

中图分类号:

引用信息:

[1]刘学芳1,温欣1,李昂1等.一种面向DGA不平衡数据的变压器缺陷识别方法[J],2024,42(06):48-55.DOI:10.19929/j.cnki.nmgdljs.2024.0079.

基金信息:

内蒙古自治区自然科学基金项目“变压器油复合抗氧化剂的筛选及其电化学检测方法研究”(2021BS05005);内蒙古电力科学研究院青年科技人员支持计划项目“蒙西地区充油变压器运行状态智能监测及预警技术研究”(QK-2024-1-02)

检 索 高级检索