nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 06 48-55
一种面向DGA不平衡数据的变压器缺陷识别方法
基金项目(Foundation): 内蒙古自治区自然科学基金项目“变压器油复合抗氧化剂的筛选及其电化学检测方法研究”(2021BS05005);内蒙古电力科学研究院青年科技人员支持计划项目“蒙西地区充油变压器运行状态智能监测及预警技术研究”(QK-2024-1-02)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0079
中文作者单位:

内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司,呼和浩特 010020;国家电网锦州供电公司太和区供电分公司,辽宁 锦州 121000

摘要(Abstract):

针对变压器缺陷样本存在不平衡性,现有诊断方法适用性不足的问题,提出一种面向油中溶解气体分析(Dissolved GasAnalysis,DGA)不平衡数据的变压器缺陷识别方法。首先,基于内蒙古西部地区部分电厂送检油样的DGA分析,重新划分5种变压器状态类型,并通过增加状态特征增大其差距;然后,构建综合考虑检测气体含量、无编码比值、三比值的输入特征,对智能诊断模型进行训练和测试;最后,选用改进动态多种群粒子群优化算法优化极限学习机神经网络参数,通过对未定义类型样本进行分析,验证方法的有效性。结果表明,本方法适用于DGA不平衡数据集,能够对变压器运行状态及缺陷进行准确识别。

关键词(KeyWords): 变压器;缺陷识别;油中溶解气体分析;不平衡性;动态多种群粒子群优化算法;极限学习机
参考文献 [1] 齐波,王一鸣,张鹏,等.基于自决策主动纠偏的电力变压器油色谱诊断模型[J].高电压技术,2020,46(1):23-32. QI Bo, WANG Yiming, ZHANG Peng, et al. Oil Chromatography Diagnosis Model of Power Transformer Based on Self-decision Active Rectification[J]. High Voltage Engineering, 2020, 46(1): 23- 32.
[2] 李长云,杨静雨,连鸿松,等.基于ICEEMDAN-IPSO-ELM的硅油溶解气体浓度组合预测方法[J].高电压技术,2023,49(9):3898- 3909. LI Changyun, YANG Jingyu, LIAN Hongsong, et al. Combined Prediction Method of Dissolved Gas Concentration of Silicone Oil Based on ICEEMDAN-IPSO-ELM[J]. High Voltage Engineering, 2023, 49(9): 3898-3909.
[3] 齐波,王一鸣,张鹏,等.面向变压器油色谱趋势预测的深度递归信念网络[J].电网技术,2019,43(6):1892-1900. QI Bo, WANG Yiming, ZHANG Peng, et al. Deep Recurrent Belief Network Model for Trend Prediction of Transformer Oil Chromatography Data[J]. Power System Technology, 2019, 43(6): 1892-1900.
[4] 龚泽威一,饶桐,王钢,等.基于改进粒子群优化XGBoost的变压器故障诊断方法[J].高压电器,2023,59(8):61-69. GONG Zeweiyi, RAO Tong, WANG Gang, et al. Fault Diagnosis Method of Transformer Based on Improved Particle Swarm Optimization XGBoost[J]. High Voltage Apparatus, 2023, 59(8): 61-69.
[5] 向小民,盛刘宇,刘谦,等.基于特征选择和ICOA-LSSVM的变压器故障诊断[J/OL].电气工程学报,1-9[2023-10-20].https://link.cnki.net/urlid/10.1289.TM.20231027.1033.002.
[6] 吴广宁,袁海满,高波,等.基于特征评估与核主元分析的电力变压器故障诊断[J].高电压技术,2017,43(8):2533-2540. WU Guangning, YUAN Haiman, GAO Bo, et al. Fault Diagnosis of Power Transformer Based on Feature Evaluation and Kernel Principal Component Analysis[J]. High Voltage Engineering, 2017, 43(8): 2533-2540.
[7] 荣智海,齐波,李成榕,等.面向变压器油中溶解气体分析的组合DBN诊断方法[J].电网技术,2019,43(10):3800-3808. RONG Zhihai, QI Bo, LI Chengrong, et al. Combined DBN Diagnosis Method for Dissolved Gas Analysis of Power Transformer Oil[J]. Power System Technology, 2019, 43(10): 3800-3808.
[8] 崔宇,侯慧娟,苏磊,等.考虑不平衡案例样本的电力变压器故障诊断方法[J].高电压技术,2020,46(1):33-41. CUI Yu, HOU Huijuan, SU Lei, et al. Fault Diagnosis Method for Power Transformer Considering Imbalanced Class Distribution[J]. High Voltage Engineering, 2020, 46(1): 33-41.
[9] 电力行业电力变压器标准化技术委员会.变压器油中溶解气体分析和判断导则:DL/T 722—2014[S].北京:中国电力出版社,2015.
[10] HUANG G B, WANG D H, LAN Y. Extreme Learning Machines: A Survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[11] 肖兵,张雅婷,刘颂凯,等.基于PCC和KELM的电力系统暂态稳定分析方法[J].内蒙古电力技术,2023,41(3):57-62. XIAO Bing, ZHANG Yating, LIU Songkai, et al. Transient Stability Analysis Method of Power Systems Based on PCC and KELM[J]. Inner Mongolia Electric Power, 2023, 41(3): 57-62.
[12] 王艳,李伟,赵洪山,等.基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法[J].电力系统保护与控制,2023,51(4):32- 42. WANG Yan, LI Wei, ZHAO Hongshan, et al. Transformer DGA Fault Diagnosis Method Based on DBN-SSAELM[J]. Power System Protection and Control, 2023, 51(4): 32-42.
[13] 高云龙,闫鹏.基于多种群粒子群算法和布谷鸟搜索的联合寻优算法[J].控制与决策,2016,31(4):601-608. GAO Yunlong, YAN Peng. Unified Optimization Based on Multi-swarm PSO Algorithm and Cuckoo Search Algorithm[J]. Control and Decision, 2016, 31(4): 601-608.
[14] 仝秋娟,李萌,赵岂.基于分类思想的改进粒子群优化算法[J].现代电子技术,2019,42(19):11-14. TONG Qiujuan, LI Meng, ZHAO Qi. An Improved Particle Swarm Optimization Algorithm Based on Classification[J]. Modern Electronics Technique, 2019, 42(19): 11-14.
[15] 王宇嘉,聂善坤,肖闪丽.基于动态多种群的粒子群优化算法[J]. 电子科技,2017,30(7):9-12,16. WANG Yujia, NIE Shankun, XIAO Shanli. A dynamic Multi- group Particle Swarm Optimization[J]. Electronic Science and Technology, 2017, 30(7): 9-12, 16.
[16] 奚金明,郑荣艳.基于自适应权重和莱维飞行的改进海鸥优化算法[J].计算机系统应用,2023,32(12):171-179. XI Jinming, ZHENG Rongyan. Improved Seagull Optimization Algorithm Based on Adaptive Weight and Levy Flight[J]. Computer System Application, 2023, 32(12): 171-179.
[17] 国珍,仝棣.基于莱维飞行粒子群算法的异步电机效率优化[J/OL]. 计算 机仿 真,1-7[2023-10-20].https://link.cnki.net/urlid/11.3724.TP.20231108.1637.022.
[18] 唐可心,梁晓磊,周文峰,等.具有重组学习和混合变异的动态多种群粒子群优化算法[J].控制与决策,2021,36(12):2871-2880. TANG Kexin, LIANG Xiaolei, ZHOU Wenfeng, et al. Dynamic Multi-population Particle Swarm Optimization Algorithm with Recombined Learning and Hybrid Mutation[J]. Control and Decision, 2021, 36(12): 2871-2880.
[19] 侯维春,袁志鹏.混合动力汽车参数的动态重组多子群粒子群优化[J].机械设计与制造,2023(10):59-64. HOU Weichun, YUAN Zhipeng. Hybrid Electric Vehicle Parameters Optimization Based on Dynamic Regroup Multi-Population PSO Algorithm[J]. Machinery Design & Manufacture, 2023(10): 59-64.
[20] 罗澍忻,陆秋瑜,靳冰洁,等.考虑相关因素的长短时记忆网络短期负荷预测方法[J].机电工程技术,2019,48(12):126-129. LUO Shuxin, LU Qiuyu, JIN Bingjie, et al. Short-term Load Forecasting Based on Long Short-term Memory Network Considering Related Factors[J]. Mechanical & Electrical Engineering Technology, 2019, 48(12): 126-129.
[21] 梁晓磊,张孟镝,周文峰,等.种群熵启动反向学习的动态多种群粒子群算法[J].智能计算机与应用,2024,14(2):9-17. LIANG Xiaolei, ZHANG Mengdi, ZHOU Wenfeng, et al. Dynamic Multi-swarm Particle Swarm Optimization Using Population Entropy to Start Reverse Learning[J]. Intelligent Computer and Applications, 2024, 14(2): 9-17.
[22] 郑雅洲,刘万平,黄东.一种基于注意力机制的BERT-CNN-GRU检测方法[J/OL].计算机工程,1-11[2023-10-20].https://doi.org/10.19678/j.issn.1000-3428.0068479.
[23] 刘超,刘洋,韩刚,等.改进Dempster-Shafer证据与概率模型集成的变压器故障诊断[J/OL].电力系统及其自动化学报,1-12[2023-10-20].https://doi.org/10.19635/j.cnki.csu-epsa.001395.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0079

中图分类号:

引用信息:

[1]刘学芳1,温欣1,李昂1等.一种面向DGA不平衡数据的变压器缺陷识别方法[J],2024,42(06):48-55.DOI:10.19929/j.cnki.nmgdljs.2024.0079.

基金信息:

内蒙古自治区自然科学基金项目“变压器油复合抗氧化剂的筛选及其电化学检测方法研究”(2021BS05005);内蒙古电力科学研究院青年科技人员支持计划项目“蒙西地区充油变压器运行状态智能监测及预警技术研究”(QK-2024-1-02)

检 索 高级检索