9 | 0 | 972 |
下载次数 | 被引频次 | 阅读次数 |
为了合理选取特高压输电线路重冰区导线安全系数,提高线路安全性,调研了自2009年以来我国已投运特高压工程涉及重冰区段的导线型号及安全系数,分析了重冰区导线安全系数与弧垂、应力和铁塔质量的关系;基于三维空间力学对输电线路悬挂点安全系数受耐张串拉力的影响进行数值计算;最后基于全生命周期对重冰区交替段导线归并适应性进行分析。结果表明,随着导线安全系数的增大,铁塔质量单体减少,同时导线弧垂增大导致铁塔高度增加,铁塔单体质量增大,当导线安全系数达到某个临界点,铁塔质量有最优解;40 mm和60 mm特重冰区推荐导线安全系数分别为3.5和3.1;耐张串拉力对悬挂点安全系数的影响值通常在0.1~0.2;对较短的重冰区交替段导线可进行适当归并。
Abstract:In order to reasonably select the safety coefficient of conductors in the heavy icing zones of UHV transmission lines and improve the line safety, the conductor types and safety coefficients of the heavy icing zones involved in the UHV projects that have been put into operation in China since 2009 are investigated. The relationship among the conductor safety coefficient, sag, stress and the mass of iron towers in the heavy icing areas are analyzed. Based on three-dimensional space mechanics, numerical calculations are carried out on the influence of the tension of the strain insulator string on the safety coefficient of the suspension point of the UHV transmission line. Finally, the adaptability of conductor merging in the alternate sections of the heavy icing areas is analyzed based on full life cycle. The results show that as the conductor safety coefficient increases, the mass of the iron tower decreases. At the same time, the increase in conductor sag leads to an increase in the height of the iron tower. When the conductor safety coefficient reaches a certain critical point, there is an optimal solution for the mass of the iron tower. The recommended conductor safety coefficients for the extremely heavy icing areas with ice thicknesses of 40 mm and 60 mm are 3.5 and 3.1 respectively. The influence value of the tension of the strain insulator string on the safety coefficient of the suspension point is usually between 0.1 and 0.2. The conductors in the shorter alternate sections of the heavy icing areas can be appropriately merged.
[1] 韩先才,孙昕,陈海波,等.中国特高压交流输电工程技术发展综述[J].中国电机工程学报,2020,40(14):4371-4386,4719. HAN Xiancai, SUN Xin, CHEN Haibo, et al. Review on the development of UHV AC transmission engineering technology in China[J]. Proceedings of the CSEE, 2020, 40(14): 4371-4386, 4719.
[2] 周俊.基于量子遗传算法的特高压新能源电网动态无功优化[J]. 东北电力技术,2022,43(9):10-14,46. ZHOU Jun. Dynamic Reactive Power Optimization of UHV New Energy Power Network Based on Quantum Genetic Algorithm[J]. Northeast Electric Power Technology, 2022, 43(9): 10-14, 46.
[3] ZHANG Youquan, WANG Fei, WANG Shaocan, et al. The analysis and countermeasures for the influencing of power grid engineering electromagnetic environment[C]//ERPE. 2014 International Conference on Energy Research and Power Engineering. Dalian: ERPE, 2014.
[4] 张文亮,陆家榆,鞠勇,等.±800 kV直流输电线路的导线选型研究[J].中国电机工程学报,2007,27(27):1-6. ZHANG Wenliang, LU Jiayu, JU Yong, et al. Research on wire selection for ±800 kV DC transmission lines[J]. Proceedings of the CSEE,2007,27(27): 1-6.
[5] 陈友慧,杨继业,马强,等.扇形覆冰导线舞动特性数值模拟分[J].东北电力技术,2017,38(8):44-46. CHEN Youhui, YANG Jiye, MA Qiang, et al. Numerical Analysis of Galloping Character of Fan?Shaped Ice Cover Conductor[J]. Northeast Electric Power Technology, 2017, 38(8): 44-46.
[6] GAO Yan, YANG Rengang, LI Wei. Selection and application of electric saving wires in practical engineering[J]. Electric Power Construction. 2012, 33(9): 83-86
[7] 刘泽洪,万建成,孙涛,等,±800 kV特高压直流线路导线选型敏感因素分析[J].电力建设,2015,36(2):34-40. LIU Zehong, WAN Jiancheng, SUN Tao, et al. Analysis of sensitive factors for wire selection of ± 800 kV UHV DC line [J]. Electric Power Construction, 2015,36(2): 34-40.
[8] 马海木呷,刘炯,梁明,等.基于脱冰跳跃和电晕条件下的特重冰区特高压交流输电线路地线支架高度研究[J].电工技术,2023(15):195-199,202. MA Haimuga, LIU Jiong, LIANG Ming, et al. Research on ground support height of UHV AC transmission lines in extra-heavy ice region based on deicing jump and corona conditions [J]. Electric Engineering, 2023(15): 195-199,202.
[9] 邵天晓.架空送电线路的电线力学计算[M].2版.北京:中国电力出版社,2003.
[10] 中国电力工程顾问集团有限公司.电力工程设计手册[M].北京:中国电力出版社,2019.
[11] 邬雄,万保权,路遥.1000 kV级交流输电线路电磁环境的研究[J].高电压技术,2006,32(12):55-58. WU Xiong, WAN Baoquan, LU Yao. Study on electromagnetic environment of 1000 kV AC transmission line[J]. High Voltage Engineering, 2006, 32(12): 55-58.
[12] 汪晗,李启迪,黄治翰,等.基于WPA优化LSSVM的输电线路覆冰厚度预测[J].东北电力技术,2022,43(2):42-46. WANG Han, LI Qidi, HUANG Zhihan, et al. Prediction of Transmission Line Icing Thickness Based on LSSVM Optimized by WPA[J]. Northeast Electric Power Technology, 2022, 43(2): 42-46.
[13] 胡安民.架空电力线路实用计算[M].北京:中国水利水电出版社,2003.
[14] 刘玥君,张新语,郭峻菘,等.输电线路在冰风荷载作用下的可靠性研究[J].东北电力大学学报,2020,40(5):63-68. LIU Yuejun, ZHANG Xinyu, GUO Junsong, et al. Study on the Reliability of Electric Transmission Line Under Ice Load and Wind Load[J]. Journal of Northeast Dianli University, 2020, 40(5): 63-68.
[15] 电力行业电力规划设计标准化技术委员会.重覆冰架空输电线路设计技术规程:DL/T 5440—2020[S].北京:中国电力出版社,2021.
[16] 能源行业电网设计标准化技术委员会.架空输电线路电气设计规程:DL/T 5582—2020[S].北京:中国计划出版社,2009.
[17] 全国电线电缆标准化技术委员会.圆线同心绞架空导线:GB/ T 1179—2017[S].北京:中国标准出版社,2017.
[18] 秦剑,刘晨,齐志强,等.基于悬链线法的张力放线连续过程计算方法及工程试验[J].南方电网技术,2021,15(6):36-42. QIN Jian, LIU Chen, QI Zhiqiang, et al. Calculation method and engineering test of continuous tension pay-off process based on catenary method[J]. Southern Power System Technology, 2021, 15(6): 36-42.
[19] 万建成,秦剑,乔良,等.张力放线施工工艺因素对导线松股的影响及其风险评价[J].广东电力,2023,36(8):113-123. WAN Jiancheng, QIN Jian, QIAO Liang, et al. Influence of tension pay-off construction process factors on loose strand of conductor and its risk evaluation[J]. Guangdong Electric Power, 2023, 36(8): 113-123.
[20] 梁楷明,徐懂理,郭雅涛,等.牵张放线智能感应及安全控制技术研究[J].黑龙江科学,2024,15(10):47-51. LIANG Kaiming, XU Dongli, GUO Yatao, et al. Research on intelligent sensing and safety control technology of stretch pay-off[J]. Heilongjiang Science, 2024, 15(10): 47-51.
[21] 薛楚凡,韩永鸣,汤泳,等.1250 mm2导线放线体系动力特性研究[J].东北电力大学学报,2019,39(6):71-77. XUE Chufan, HAN Yongming, TANG Yong, et al. Study on Dynamic Characteristics of 1250 mm2 Wire Stringing System [J]. Journal of Northeast Dianli University, 2019, 39(6): 71-77.
[22] 陈虎.架空输电线路无人机放线工艺[J].电工技术,2024(6): 178-180,184. CHEN Hu. UAV pay-off process for overhead transmission lines[J]. Electric Engineering, 2024(6): 178-180, 184.
[23] 万建成,孙涛,刘玉杰,等.1000 mm2大截面导线放线施工技术研究[J].中国电机工程学报,2010,30(增刊1):237-244. WAN Jiancheng, SUN Tao, LIU Yujie, et al. Study on pay-off construction technology of 1000 mm2 large cross-section conductor[J]. Proceedings of the CSEE, 2010, 30(S1): 237-244.
[24] 刘洪宇,龙步良.特高压输电线路大截面导线张力放线施工技术[J].工程技术研究,2018(7):98-99. LIU Hongyu, LONG Buliang. Tension pay-off construction technology of large cross-section wire for UHV transmission lines [J]. Engineering and Technological Research, 2018(7): 98-99.
[25] 吴锡敏.特高压输电线路大截面导线张力放线施工技术分析[J].电子世界,2021(5):200-201. WU Ximin. Analysis of tension pay-off construction technology of large section conductor of UHV transmission line[J]. Electronic World, 2021(5): 200-201.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2025.0022
中图分类号:
引用信息:
[1]马海木呷1,马海云1,王杰2等.基于全生命周期的重冰区特高压线路导线安全系数研究[J],2025,43(02):54-61.DOI:10.19929/j.cnki.nmgdljs.2025.0022.
基金信息:
中国电力工程顾问集团西南电力设计院有限公司科技项目“特重冰区交流特高压输电线路设计关键技术研究”(KQ0743)