nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 03, 13-19
基于时频域特征参数的风电机组滚动轴承故障诊断方法及应用
基金项目(Foundation): 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司青年科技人员支持计划项目“风力发电机组滚动轴承振动特征分析与故障特征提取方法优化”(2021-QK-01)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0035
摘要:

针对风电机组滚动轴承工作环境恶劣、工况多变且振动信号成分复杂等特点, 将33项时域和频域特征参数及其特性应用于风电机组滚动轴承状态监测和故障诊断中, 利用奇异值分解重构法(Singular Value Decomposition, SVD)将滚动轴承振动故障信号中的噪声等干扰成分去除, 降噪重构后的信号经过基于经验模式分解法(Empirical Mode Decomposition, EMD)的希尔伯特-黄变换, 实现故障冲击信号的共振解调处理, 将低频周期故障调制信号筛选出来, 最终结合滚动轴承各部件故障特征频率、振动信号时频分析结果和时频特征参数诊断结果实现滚动轴承的状态监测和故障识别。 并通过振动测试信号分析, 验证了该方法对提取风电机组滚动轴承故障特征的有效性。

Abstract:

Aiming at the characteristics of wind turbine rolling bearings, such as harsh working environment, variable working conditions and complex vibration signal components, the author applies 33 time and frequency domain characteristic parameters and their properties to the rolling bearing condition monitoring and fault diagnosis of wind turbine, and deconstructs the rolling bearing vibration fault signal by using Singular Value Decomposition(SVD) to remove noise and other interfering components. The noise and other interference components are removed by SVD, and the signal after noise reduction and reconstruction undergoes the Hilbert-Yellow transformation based on Empirical Mode Decomposition(EMD) to realize the resonance demodulation of the faulty impact signal, and the low-frequency fault modulation signal is screened out, and finally, the combination of the characteristic frequency of the faults of each component of the rolling bearing, the timefrequency analysis of the vibration signal and the diagnostic results of the time-frequency characteristic parameters are combined. Finally, combined with the fault characteristic frequency of rolling bearing components, vibration signal time - frequency analysis and time-frequency characteristic parameter diagnosis results to realize the condition monitoring and fault identification of rolling bearings. And the vibration test signal verification analysis verifies the effectiveness of the method to extract the rolling bearing fault characteristics of wind turbine.

参考文献

[1] 秦海岩.十八大以来我国风电产业实现高质量发展[J].风能, 2022(9):1. QIN Haiyan. China's wind power induStry has achieved high-quality development since the 18th CPC National Congress[J]. Wind Energy, 2022(9):1.

[2] The International Renewable Energy Agency. Renewable Energy statistics 2022[R]. Abu Dhabi:The International Renewable Energy Agency, 2022.

[3] 朱伏平,秦琴,杨方燕,等.基于信息融合技术的滚动轴承故障预测方法[J].机械设计,2023,40(1):56-64. ZHU Fuping, QIN Qin, YANG Fangyan, et al. A rolling bearing fault prediction method based on information fusion technology[J]. Mechanical Design, 2023, 40(1):56-64.

[4] 郭俊超,甄冬,孟召宗,等.基于WAEEMD和MSB的滚动轴承故障特征提取[J].中国机械工程,2021,32(6):793-1800. GUO Junchao, ZHEN Dong, MENG Zhaozong, et al. Fault feature extraction of rolling bearing based on WAEEMD and MSB[J]. China Mechanical Engineering, 2021, 32(6):1793-1800.

[5] 史宗辉,陈长征,田淼.基于S-CBiGRU的风电机组滚动轴承故障诊断方法[J].机电工程,2022,39(9):1-9. SHI Zonghui, CHEN Changzheng, TIAN Miao. Fault diagnosis method of wind turbine rolling bearing based on S-CBiGRU[J]. Electromechanical Engineering, 2022, 39(9):1-9.

[6] 安文杰,陈长征,田淼.基于MSCNNSA-BiGRU的变工况风电机组滚动轴承故障诊断研究[J].机电工程,2022,39(8):1096-1103. AN Wenjie, CHEN Changzheng, TIAN Miao. Rolling bearing fault diagnosis of wind turbine under variable working conditions based on MSCNNSA-BiGRU[J]. Electromechanical Engineering, 2022, 39(8):1096-1103.

[7] 郑近德,代俊习,朱小龙,等.基于改进多尺度模糊熵的滚动轴承故障诊断方法[J].振动、测试与诊断,2018,38(5):929-934. ZHENG Jinde, DAI Junxi, ZHU Xiaolong, et al. Rolling bearing fault diagnosis method based on improved multi-scale fuzzy entropy[J]. Vibration, Testing and Diagnosis, 2018, 38(5):929-934.

[8] 徐峥,梁伟阁,谈芳吟,等.基于DCNN-BiLSTM的滚动轴承性能退化因子构建方法[J].船电技术,2023,43(1):27-32. XU Zheng, LIANG Weige, TAN Fangyin, et al. Construction method of performance degradation factor of rolling bearing based on DCNN-BiLSTM[J]. Marine Electricity Technology, 2023, 43(1):27-32.

[9] 张辉,曹云鹏,董昕阳,等.基于DFCNN的滚动轴承定量诊断方法研究[J].热能动力工程,2022,37(12):181-188. ZHANG Hui, CAO Yunpeng, DONG Xinyang, et al. Research on Quantitative Diagnosis Method of Rolling Bearing Based on DFCNN[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(12):181-188.

[10] 李秋婷,王秀青,解飞,等.基于注意力机制的滚动轴承故障诊断方法研究[J].轴承,2022(12):1-15. LI Qiuting, WANG Xiuqing, XIE Fei, et al. Research on fault diagnosis method of rolling bearing based on attention mechanism[J]. Bearing, 2022(12):1-15.

[11] 朱文昌,李伟,倪广县,等.基于高维随机矩阵综合特征指标的滚动轴承状态异常检测算法[J].仪表技术与传感器,2021(8):82-86. ZHU Wenchang, LI Wei, NI Guangxian, et al. Rolling bearing state anomaly detection algorithm based on multi-dimensional random matrix comprehensive characteristic index[J]. Instrument Technique and Sensor, 2021(8):82-86.

[12] 段彩丽,马驰,张建生,等.基于Transformer的汽轮机滚动轴承早期微弱故障检测方法研究[J].电力大数据,2023,26(9):40-48. DUAN Caili, MA Chi, ZHANG Jiansheng, et al. Research on Early Weak Fault Detection Method for Rolling Bearings in Turbines Based on Transformer Aigorithm[J]. Power Systems and Big Data, 2023, 26(9):40-48.

[13] 刘西洋,陈果,尉询楷,等.基于小波分析和卷积神经网络的滚动轴承早期故障告警方法[J].航空动力学报,2022(12):1-15. LIU Xiyang, CHEN Guo, WEI Xunkai, et al. Early fault warning method of rolling bearing based on wavelet analysis and convolution neural network[J]. Journal of Aerospace Power, 2022(12):1-15.

[14] 吕凤霞,繆益,别锋锋,等.ICEEMDAN和GS-SVM算法在滚动轴承声发射故障诊断中的应用研究[J].噪声与振动控制,2022(12):1-7. LYU Fengxia, LIAO Yi, BIE Fengfeng, et al. Application of ICEEMDAN and GS-SVM algorithm in acoustic emission fault diagnosis of rolling bearing[J]. Noise and Vibration Control, 2022(12):1-7.

[15] 陈龙,谭继文,姜晓瑜.基于TESPAR和LS-SVM算法的滚动轴承退化趋势预测[J].煤矿机械,2017,38(8):18-20. CHEN Long, TAN Jiwen, JIANG Xiaoyu. Rolling bearing degradation trend prediction based on TESPAR and LS-SVM algorithm[J]. Coal Mining Machinery, 2017, 38(8):18-20.

[16] 李颖,吴仕虎,王鹏.基于MATLAB的滚动轴承寿命计算系统[J].机电工程技术,2022,5(11):38-42. LI Ying, WU Shihu, WANG Peng. Rolling bearing life calculation system based on MATLAB[J]. Mechanical&Electrical Engineering Technology, 2022, 5(11):38-42.

[17] 孙永峰.基于卷积和循环神经网络的风电机组滚动轴承故障诊断方法研究[D].兰州:兰州理工大学,2022.

[18] 施杰,伍星,刘韬.采用HHT算法与卷积神经网络诊断轴承复合故障[J].农业工程学报,2020,36(4):34-42. SHI Jie, WU Xing, LIU Tao. Fault Diagnosis of Bearing Compound Using HHT Algorithm and Convolution Neural Network[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4):34-42.

[19] S. Khanama, N.Tandona, J.K. Dutt b. Fault size estimation in the outer race of ball bearing using discrete wavelet transform of the vibration signal[J]. Science Direct, 2014, 14:12-19.

[20] Junfeng Liu, Xiang Yu. Rolling Element Bearing Fault Diagnosis for Complex Equipment based on MFMD and BP Neural Network[J]. Journal of Physics:Conference Series, 2021, 1948:1-10.

[21] Yunqiang Zhang, Guoquan Ren, Dinghai Wu, et al. Rolling bearing fault diagnosis utilizing variational mode decomposition based fractal dimension estimation method[J]. Measurement, 2021, 181: 1-11.

[22] 齐咏生,刘飞,李永亭.基于MK-MOMEDA和Teager能量算子的风电机组滚动轴承复合故障诊断[J].太阳能学报,2021,7(42): 1297-1306. QI Yongsheng, LIU Fei, LI Yongting. Composite Fault Diagnosis of Wind Turbine Rolling Bearings Based on MK- MOMEDA and Teager Energy Operators[J]. Acta Energiae Solaris Sinica, 2021, 7(42): 1297-1306.

[23] 段杰.滚动轴承微弱冲击信号的检测与特征提取方法研究[D].武汉:华中科技大学,2019.

[24] 刘红梅,王轩,陆晨.基于自混合干涉(SMI)技术和希尔伯特黄变换(HHT)的齿轮箱故障检测[J].激光与光电子学进展,2022(7):1-11. LIU Hongmei, WANG Xuan, LU Chen. Gearbox Fault Detection Based on Self Mixing Interference (SMI) Technology and Hilbert Huang TranSform (HHT)[J]. Laser& Optoelectronics Progress, 2022(7): 1-11.

[25] 黄泽佼,徐子东,罗晗.希尔伯特-黄变换(HHT) H-4数据去噪处理中的应用[J].物探与化探,2022,5(46):1232-1239. HUANG Zejiao, XU Zidong, LUO Han. Application of Hilbert- Huang Transform (HHT) H- 4 data denoising[J]. Geophysical and Geochemical Exploration, 2022, 5(46): 1232-1239.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0035

中图分类号:

引用信息:

[1]张利慧,李殊瑶,李晓波等.基于时频域特征参数的风电机组滚动轴承故障诊断方法及应用[J].内蒙古电力技术,2024,42(03):13-19.DOI:10.19929/j.cnki.nmgdljs.2024.0035.

基金信息:

内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司青年科技人员支持计划项目“风力发电机组滚动轴承振动特征分析与故障特征提取方法优化”(2021-QK-01)

检 索 高级检索