| 0 | 0 | 26 |
| 下载次数 | 被引频次 | 阅读次数 |
针对虚拟同步发电机(virtual synchronous generator,VSG)输出的有功、无功间存在耦合,影响其最终电压和频率调节能力,严重情况下将引发系统失稳的问题,提出一种基于对角阵补偿矩阵的解耦策略,实现虚拟同步发电机的功率静态解耦。针对VSG的功率耦合问题,采用串联对角阵补偿矩阵实现VSG的静态功率解耦;在考虑VSG运行工作点变动的情况下,采用基于功角估算的对角阵补偿矩阵直接解耦法进一步优化VSG的动态功率解耦特性。最后通过仿真对所提方法的有效性进行了验证。
Abstract:Due to the coupling between the active and reactive power output of VSG affects its final voltage and frequency regulation ability, and in severe cases, can cause system instability, this article adopts a decoupling strategy based on diagonal matrix compensation matrix to achieve static power decoupling of VSG, and introduces an optimized decoupling scheme based on power angle estimation to address the drawback of decoupling performance being affected by the operating point of the system. Finally, the effectiveness of the relevant control is verified through simulation.
[1] 黄锦禄.计及输电网侧电解铝负荷特性的配电网侧储能优化配置[J].电力大数据,2024,27(5):46-53. HUANG Jinlu. The Optimal Allocation of Energy Storage at Distribution Network Side Considering the Electrolytic Aluminum Load Characteristics of Transmission Network Side[J]. Power Systems and Big Data, 2024, 27(5): 46-53.
[2] 刘兴艳,郭元萍,尹佳,等.基于时序运行模拟的贵州省新能源消纳能力分析[J].电力大数据,2024,27(9):10-18. LIU Xingyan, GUO Yuanping, YIN Jia, et al. Analysis of Re- newable Energy Consumption Capacity in Guizhou Province图9解耦前后有功、无功功率突变时系统功率响应波形Fig.9 Power response of system to the fluctuation of grid before and after decoupling (a)解耦前后有功功率突变时系统响应波形(b)解耦前后无功功率突变时系统响应波形1.21.00.80.60.40.20 -0.2-0.40 12 34 5 Q/kvar t/s —解耦前—解耦后2.52.01.51.00.50 -0.50 12 34 5 P/kW t/s —解耦前—解耦后Based on Time-Series Operational Simulation[J]. Power Systems and Big Data, 2024, 27(9): 10-18.
[3] 李书勇,蔡海青,沈娜,等.不同类型新能源接入对微电网频率的影响[J].分布式能源,2024,9(2):8-18. LI Shuyong, CAI Haiqing, SHEN Na, et al. Impact of Different Types of New Energy Access on Microgrid Frequency[J]. Distributed Energy, 2024, 9(2): 8-18.
[4] 宋美琪,李洪全,肖赫,等.面向高比例新能源接入主动配电网的多层模型预测电压控制[J].分布式能源,2025,10(1):53-61. SONG Meiqi, LI Hongquan, XIAO He, et al. Multilayer Model Predictive Voltage Control for High Proportion New Energy Integrated Active Distribution Network[J]. Distributed Energy, 2025, 10(1): 53-61.
[5] 宁峰,刘闯,陈俊睿.基于同步发电机三阶模型的光储构网型主动支撑控制策略[J].东北电力大学学报,2025,45(1):64-72. NING Feng, LIU Chuang, CHEN Junrui. Grid Forming Active Support Control Strategy for Photovoltaic and Energy Storage Based on the Third Order Model of Synchronous Generator[J]. Journal of Northeast Dianli University(Natural Science Edition), 2025, 45(1): 64-72.
[6] Soni N, Doolla S, Chandorkar M C. Inertia Design Methods for Islanded Microgrids Having Static and Rotating Energy Sources[J]. IEEE Transactions on Industry Applications, 2016, 52(6): 5165-5174.
[7] 许童羽.面向新型电力系统的智慧配电网与清洁能源消纳技术[J].东北电力技术,2024,45(10):63-64.
[8] 施凯,赵棒棒,徐培凤,等.多虚拟同步发电机并联系统的改进控制策略[J].分布式能源,2023,8(2):11-18. SHI Kai, ZHAO Bangbang, XU Peifeng, et al. Improved Control Strategy of Multi Virtual Synchronous Generators Parallel System [J]. Distributed Energy, 2023, 8(2): 11-18.
[9] Stankovic A M, Sanders S R, Aydin T. Dynamic phasors in modeling and analysis of unbalanced polyphase AC machines [J]. IEEE Transactions on Energy Conversion, 2002, 17(1):107- 113.
[10] Wu H, Ruan X, Yang D, et al. Small-Signal Modeling and Parameters Design for Virtual Synchronous Generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4292- 4303.
[11] Yao W, Chen M, Matas J, et al. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing(Article) [J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 576- 588.
[12] 屈子森,蔡云旖,欢杨,等.基于自适应虚拟阻抗的虚拟同步机功率解耦控制策略[J].电力系统自动化,2018,42(17):58-72. QU Zisen, CAI Yunyi, HUAN Yang, et al. Power Decoupling Control Strategy of Virtual Synchronous Machine Based on Adaptive Virtual Impedance[J]. Automation of Electric Power Systems, 2018, 42(17): 58-72.
[13] 李明烜,王跃,徐宁一,等.松弛小功角约束条件的虚拟同步发电机功率解耦策略[J].电力系统自动化,2018,42(9):59-68. LI Mingxuan, WANG Yue, XU Ningyi, et al. Power Decoupling Strategy for Virtual Synchronous Generators with Relaxation of Small Power Angle Constraints[J]. Automation of Electric Power Systems, 2018, 42(9): 59-68.
[14] 李斌.基于虚拟同步发电机控制的微电网逆变器关键技术研究[D].重庆:重庆大学,2018.
[15] 张也,颜湘武.微网功率耦合特性分析及解耦控制[J].电网技术, 2016,40(3):812-818. ZHANG Ye, YAN Xiangwu. Analysis of power coupling characteristics and decoupling control of microgrid[J]. Power System Technology, 2016, 40(3): 812-818.
[16] 周磊,吴辉,嵇文路,等.微电网脆弱性预评估方法[J].电力需求侧管理,2018,20(1):20-24. ZHOU Lei, WU Hui, JI Wenlu, et al. Vulnerability Pre-Assessment Method for Microgrid[J]. Power Demand Side Management, 2018, 20(1): 20-24.
[17] 魏小曼,余昆,陈星莺,等.基于Affinity propagation和K-means算法的电力大用户细分方法分析[J].电力需求侧管理,2018,20(1):15-19,35. WEI Xiaoman, YU Kun, CHEN Xingying, et al. Analysis of power large user segmentation based on Affinity propagation and K-means algorithm[J]. Power Demand Side Management, 2018, 20(1): 15-19, 35.
[18] 刘益.微网逆变器的虚拟同步发电机控制技术研究[D].北京:中国矿业大学,2020.
[19] Yao W, Chen M, Matas J, et al. Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 576-588.
[20] 石荣亮,黎俊铭,董政,等.构网型虚拟同步机中暂态阻尼的作用、实现与研究前景分析[J].东北电力大学学报,2025,45(1): 22-34. SHI Rongliang, LI Junming, DONG Zheng, et al. Analysis of the Role, Realization and Research Prospects of Transient Damping in Grid-Forming Virtual Synchronous Generator[J]. Journal of Northeast Dianli University, 2025, 45(1): 22-34.
[21] 梁亦峰.基于逆变器的虚拟同步发电机控制建模与仿真[J].机电工程技术,2021,50(3):93-96. LIANG Yifeng. Modeling and Simulation of Virtual Synchronous Generator Based on Inverter Control[J]. Mechanical & Electrical Engineering Technology, 2021, 50(3): 93-96.
[22] 高菲菲,杨俊友,董鹤楠,等.基于虚拟同步发电机的光伏逆变器电压暂降自适应补偿控制策略[J].东北电力技术,2020,41(6):5- 10. GAO Feifei, YANG Junyou, DONG Henan, et al. Strategy of PV Inverter Voltage Sag Adaptive Compensation Control Based on Virtual Synchronous Generator[J]. Northeast Electric Power Technology, 2020, 41(6): 5-10.
[23] 王秀云,刘国钦,梁晓龙,等.基于改进虚拟同步发电机的预同步并网控制研究[J].东北电力大学学报,2023,43(1):92-98. WANG Xiuyun, LIU Guoqin, LIANG Xiaolong, et al. Research on Pre- Synchronous Grid-Connection Control Based on Improved Virtual Synchronous Generator[J]. Journal of Northeast Dianli University Natural Science Edition, 2023, 43(1): 92-98.
[24] 王蔚,侯士亮,刘玉建,等.基于同步电机等效电路的分布式可再生能源发电虚拟同步机控制[J].山东电力技术,2022,49(12):92- 100. WANG Wei, HOU Shiliang, LIU Yujian, et al. Virtual Synchronous Condenser Control Based on Equivalent Circuits of Synchronous Machines for Distributed Renewable Generation[J]. Shandong Electric Power, 2022, 49(12): 92-100.
[25] 郑友卓,刘安茳,徐玉韬,等.VSG控制型分布式光伏聚合模型和稳定控制方法[J].电力大数据,2024,27(4):54-62. ZHENG Youzhuo, LIU Anjiang, XU Yutao, et al. Equivalent Model and Stability Enhancement Strategy for Distributed Photovoltaic Grid-Connected Systems Based on Coherency VSGs[J]. Power Systems and Big Data, 2024, 27(4): 54-62.
[26] 丁乐言,柯松,杨军,等.基于自适应控制参数整定的虚拟同步发电机控制策略[J].综合智慧能源,2024,46(3):35-44. DING Leyan, KE Song, YANG Jun, et al. Control strategy of virtual synchronous generators based on adaptive control parameter setting[J]. Integrated Intelligent Energy, 2024, 46(3): 35-44.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2025.0055
中图分类号:
引用信息:
[1]李孝宇1,王举重1,纪晓锋1,等.基于功角估算的虚拟同步发电机功率优化解耦控制研究[J],2025,43(5):9-15.DOI:10.19929/j.cnki.nmgdljs.2025.0055.
基金信息:
江苏省高等教育教改研究课题“全程工程实践与创新能力培养模式研究”(2017JSJG127)