32 | 0 | 29 |
下载次数 | 被引频次 | 阅读次数 |
针对防振锤在不同工况下无法发挥最佳防振性能的问题,构建防振锤子系统模型,简化功率特性数据采集方程,设计实验装置对防振锤进行功率特性数值仿真计算,得到防振锤的功率特性曲线,并采用Kriging模型对防振锤的绞线抗弯刚度、绞线股间摩擦系数、材料内阻尼进行动力学优化。模拟实验结果表明:仿真结果与测定结果较为吻合,防振锤的功率特性仿真数值具有可靠性;在不同频率工况下,优化后输电导线的振幅、比振幅较小,说明防振锤功率消耗较大,具有更好的防振性能。
Abstract:In order to solve the problem that the vibration damper cannot give full play to the best anti-vibration property under different working conditions, the author constructs the model of the vibration damper subsystem, simplifies the power characteristic data acquisition equation, designs the experimental device was to numerically simulate the power characteristics of the vibration damper, through whith the power characteristic curve of the vibration damper is obtained, and uses the Kriging model is used to dynamically optimize the bending stiffness of the strand, the friction coefficient between strands and the internal damping of the vibration damper. The experimental results show that the simulation results are close to the measured results, and the simulated values of the power characteristics of the vibration damper are reliable. Under different frequency conditions, the amplitude and amplitude ratio of the transmission line is smaller after optimization, which shows that the vibration damper has higher power consumption and better anti-vibration property.
[1] 张昭,周立宪,齐翼,等.大跨越导线微风振动强度影响因素[J].振动、测试与诊断, 2021, 41(4):710-714. ZHANG Zhao, ZHOU Lixian, QI Yi, et al. The Main Influencing Factors of the Vibration Intensity of Large Crossing Conductor Under Aeolian Vibration[J]. Journal of Vibration, Measurement&Diagnosis, 2021, 41(4):710-714.
[2] 郑建欣,吕俊霞.输电线路微风振动及其防治方法[J].精密制造与自动化, 2022(2):61-64. ZHENG Jianxin, LYU Junxia. Transmission line breeze vibration and its prevention and control methods[J]. Precision Manufacturing and Automation, 2022(2):61-64.
[3] 王宝成,王宇迪.高寒地区500 kV输电线路导线间隔棒损坏原因分析及治理[J].电工技术, 2023(15):104-106. WANG Baocheng, WANG Yudi. Analysis and Treatment of Damage Causes of 500 kV Transmission Line Conductor Spacers in Alpine Area[J]. Electric Engineering, 2023(15):104-106.
[4] 郑建军,刘涛玮,郭心爱.10 kV架空绝缘导线断裂机理及原因分析[J].内蒙古电力技术, 2022, 40(5):64-67. ZHENG Jianjun, LIU Taowei, GUO Xinai. Fracture Mechanism and Cause Analysis of 10 kV Overhead Insulated Conductor[J]. Inner Mongolia Electric Power, 2022, 40(5):64-67.
[5] 赵蓂冠,王辉,董新胜,等.某220 kV架空线路地线断股故障分析[J].电工电气, 2021(3):41-44. ZHAO Mingguan, WANG Hui, DONG Xinsheng, et al. Fault analysis of ground wire broken strand of a 220 kV overhead line[J]. Electrotechnics Electric, 2021(3):41-44.
[6] 陈晓娟,王璋奇.大跨越导线在局部激励下微风振动的波动特性[J].振动工程学报, 2021, 34(2):262-270. CHEN Xiaojuan, WANG Zhangqi. Response characteristics for aeolian vibration of long-span conductors under local excitation[J]. Journal of Vibration Engineering, 2021, 34(2):262-270.
[7] 冯砚厅,李文彬,李金奎,等.输电线路预绞式防振锤对导线磨损机理及预防措施研究[J].电网与清洁能源, 2021, 37(3):24-30. FENG Yanting, LI Wenbin, LI Jinkui, et al. Study on the wear mechanism and preventive measures of transmission line pre-twisted anti-vibration hammer on conductor[J]. Power System and Clean Energy, 2021, 37(3):24-30.
[8] 张昭,齐翼,张暕,等.基于现场风特征的架空地线防振锤故障分析[J].电网与清洁能源, 2021, 37(6):77-82. ZHANG Zhao, QI Yi, ZHANG Jian, et al. Fault analysis of anti-vibration hammer of overhead ground wire based on on-site wind characteristics[J]. Power System and Clean Energy, 2021, 37(6):77-82.
[9] 李黎,张族炎,徐宁波,等.FDZ型防振锤理论计算模型及试验研究[J].振动与冲击, 2018, 37(17):196-203. LI Li, ZHANG Zuyan, XU Ningbo, et al. Theoretical calculation model and experimental study of FDZ anti-vibration hammer[J]. Journal of Vibration and Shock, 2018, 37(17):196-203.
[10] 张佳宝.低温与不同风力条件下防振锤对输电导线的磨损研究[D].北京:华北电力大学, 2022.
[11] 王宇.输电导线微风振动防振建模与仿真[D].呼和浩特:内蒙古大学, 2022.
[12] 杨芳,唐小亮,尹文阔,等.基于多参量分布式光纤传感的架空输电线路风振监测分析[J].电力系统保护与控制, 2022, 50(11):169-177. YANG Fang, TANG Xiaoliang, YIN Wenkuo, et al. Wind Vibration Monitoring Analysis of Overhead Transmission Lines Based on Multi-parameter Distributed Optical Fiber Sensing[J]. Power System Protection and Control, 2022, 50(11):169-177.
[13] 赵隆,郭玉龙,郑天堂,等.考虑特征瞬变的导线微风振动在线监测及预警技术[J].中国电力, 2021, 54(9):34-44. ZHAO Long, GUO Yulong, ZHENG Tiantang, et al. On-line monitoring and early warning technology of wire breeze vibration considering characteristic transients[J]. Electric Power, 2021, 54(9):34-44.
[14] 阎光伟,刘润泽,焦润海,等.基于改进Cascade RCNN的输电线路防振锤脱落检测方法[J].图学学报, 2023, 44(5):849-860. YAN Guangwei, LIU Runze, JIAO Runhai, et al. Detection method of dropped anti-vibration hammer for transmission line based on improved Cascade RCNN[J]. Journal of Graphics, 2023, 44(5):849-860.
[15] 窦洪彬.微风振动条件下FR-4型防振锤的滑移分析[D].北京:华北电力大学, 2022.
[16] 吴彤,李冰锋,费树岷,等.基于改进FCOS算法的架空输电线路防振锤检测[J].电气工程学报, 2023, 18(1):143-152. WU Tong, LI Bingfeng, FEI Shumin, et al. Anti-vibration Hammer Detection of Overhead Transmission Lines Based on Improved FCOS Algorithm[J]. Journal of Electrical Engineering, 2023, 18(1):143-152.
[17] 冷档定.防振锤功率特性试验研究[J].河南科技, 2020(5):68-69. LENG Dangding. Experimental study on power characteristics of anti-vibration hammer in cold setting[J]. Journal of Henan Science and Technology, 2020(5):68-69.
[18] 汪峰,黄欲成,王丰,等.大跨越输电线路防振锤和Bate阻尼线联合防振试验研究[J].应用力学学报, 2020, 37(5):1957-1964. WANG Feng, HUANG Yucheng, WANG Feng, et al. Experimental study on joint anti-vibration hammer and Bate damping line of large-span transmission line[J]. Chinese Journal of Applied Mechanics, 2020, 37(5):1957-1964.
[19] 赵拥华,张鹏,段意,等.FD型防振锤的动力特性研究[J].电力科学与工程, 2021, 37(5):73-78. ZHAO Yonghua, ZHANG Peng, DUAN Yi, et al. Study on dynamic characteristics of FD type anti-vibration hammer[J]. Electric Power Science and Engineering, 2021, 37(5):73-78.
[20] 孙利民,李长钊,狄方殿,等.防振锤抑制拉索振动的实桥试验研究[J].合肥工业大学学报(自然科学版), 2022, 45(8):1056-1060. SUN Limin, LI Changzhao, DI Fangdian, et al. Field study of cable vibration mitigation using Stockbridge damper[J]. Journal of Hefei University of Technology (Natural Science), 2022, 45(8):1056-1060.
[21] 田宗睿,智鹏鹏,云国丽,等.基于自适应增量Kriging模型的多目标稳健优化设计方法[J].中国机械工程, 2023, 34(8):931-940. TIAN Zongrui, ZHI Pengpeng, YUN Guoli, et al. Multi-objective robust optimization design method based on adaptive incremental Kriging model[J]. China Mechanical Engineering, 2023, 34(8):931-940.
[22] 潘晓阳,黄崇莉,汪涛,等.基于Kriging模型的弹性元件结构参数优化[J].陕西理工大学学报(自然科学版), 2022, 38(2):8-14. PAN Xiaoyang, HUANG Chongli, WANG Tao, et al. Optimization of structural parameters of elastic elements based on Kriging model[J]. Journal of Shaanxi Shaanxi University of Technology (Natural Science Edution), 2022, 38(2):8-14.
[23] 戴鑫,金福铭,段意,等.架空地线防振锤配置分析软件设计[J].电力科学与工程, 2022, 38(3):74-78. DAI Xin, JIN Fuming, DUAN Yi, et al. Development of Configuration Software for Damper of Overhead Ground Wire[J]. Electric Power Science and Engineering, 2022, 38(3):74-78.
[24] 周超,窦洪彬.防振锤结构与力学性能研究进展[J].电工技术, 2021(9):41-46. ZHOU Chao, DOU Hongbin. Research Progress of Anti-Vibration Hammer Structure and Mechanical Properties[J]. Electric Engineering, 2021(9):41-46.
[25] 罗超,张大伟,陈佳佳,等.防振锤对深水导管架圆管风致涡激振动抑制研究[J].海洋工程, 2022, 40(5):28-36. LUO Chao, ZHANG Dawei, CHEN Jiajia, et al. Study on suppression of wind-induced vortex vibration of circular pipe of deep-water jacket by anti-vibration hammer[J]. The Ocean Engineering, 2022, 40(5):28-36.
[26] 刘利琴,卫致荣,罗超,等.不同风况和防振锤布置对圆管涡激力影响研究[J].水动力学研究与进展, 2022, 37(5):714-721. LIU Liqin, WEI Zhirong, LUO Chao, et al. Research on influence of different wind conditions and arrangement of dampers on vortex induced force of circular pipe[J]. Journal of Hydrodynamics, 2022, 37(5):714-721.
[27] 中国电力企业联合会.防振锤技术条件和试验方法:DL/T 1099-2021[S].北京:中国电力出版社, 2022.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0007
中图分类号:
引用信息:
[1]陈少宏1, 赵建坤2, 赵建利2.防振锤功率特性数值仿真与动力学优化[J].内蒙古电力技术,2024,42(01):41-46.DOI:10.19929/j.cnki.nmgdljs.2024.0007.
基金信息:
内蒙古电力(集团)有限责任公司科技项目“内蒙古电网输电线路典型风振区线路风振综合防治技术研究”(2020-01)