53 | 0 | 60 |
下载次数 | 被引频次 | 阅读次数 |
针对某1000 MW双切圆锅炉局部水冷壁发生严重高温腐蚀问题,通过冷态空气动力场试验进行风量测量及风门挡板特性测试,并结合水冷壁近壁区还原性气体浓度测试验证,确定原因为:在较大的DCS数据偏差误导下,使得运行时挡板开度不合理,导致局部区域缺氧燃烧严重,造成该区域发生严重的高温腐蚀。调整运行方式后,较大程度上缓解了该区域缺氧燃烧的情况,发生水冷壁高温腐蚀的可能性大幅降低。
Abstract:In response to the severe high-temperature corrosion problem of the local water-cooled wall of a 1000 MW double tangential boiler, air flow measurement and damper baffle characteristic testing are conducted through cold aerodynamic field tests, and combined with the verification of reducing gas concentration testing in the near wall area of the water- cooled wall, it is determined that the reasons are:under the misleading of large DCS data deviation, the baffle opening is unreasonable during operation, leading to severe oxygen-deficient combustion in the local area, resulting in severe high-temperature corrosion in that area. After adjusting the operating mode, the situation of oxygen-deficient combustion in the area is greatly alleviated, and the possibility of high-temperature corrosion of the water-cooled wall is greatly reduced.
[1] 中国环境科学研究院.火电厂大气污染物排放标准:GB 13223— 2011[S].北京:中国环境科学出版社,2011.
[2] 靳军.墙式切圆燃烧冲蚀磨损与高温腐蚀的耦合作用研究[D].哈尔滨:哈尔滨工业大学,2014.
[3] 闫超,廖伟辉,张锋,等.电站燃煤锅炉新型煤粉分配器的研发及应用[J].热力发电,2023,52(4):159-166. YAN Chao, LIAO Weihui, ZHANG Feng, et al. Research and application of new pulverized coal distributor for power plant coal-fired boiler[J]. Thermal Power Generation, 2023, 52(4): 159-166.
[4] 季文波,康龙基,王硕.某电厂锅炉水冷壁管减薄原因分析[J].锅炉制造,2023,298(2):43-45. JI Wenbo, KANG Longji, WANG Shuo. Cause Analysis of Water Wall Tubes Thickness Reduction of a Power Plant[J]. Bolier Manufacture, 2023, 298(2): 43-45.
[5] 祁青福,马世城,杨忠灿,等.某350 MW机组对冲锅炉燃用高碱煤炉膛腐蚀防治研究[J].热力发电,2024,53(1):91-98. QI Qingfu, MA Shicheng, YANG Zhongcan, et al. Study on Corrosion Prevention of the Furnace of a 350 MW Opposite-firing Boiler Burning High- alkali Coal[J]. Thermal Power Generation, 2024, 53(1): 91-98.
[6] 常伟,徐贤,魏然,等.煤电机组深度调峰对锅炉受热面管的影响[J].电力科技与环保,2022,38(6):458-466. CHANG Wei, XU Xian, WEI Ran, et al. Analysis of influence of deep peak shaving on heating surface tubes of coal-fired power units[J]. Electric Power Environmental Protection, 2022, 38(6): 458-466.
[7] 陈是楠.600 MW切圆锅炉燃烧器布置方式优化及其硫化氢生成特性研究[D].北京:北京交通大学,2016.
[8] 程超,韩建伟,任建辉.300 MW电站锅炉水冷壁高温腐蚀现象产生原因的探讨[J].电站系统工程,2023,39(2):22-24. CHENG Chao, HAN Jianwei, REN Jianhui. Discussion on High Temperature Corrosion of 300 MW Utility Boiler Water Wall[J]. Power System Engineering, 2023, 39(2): 22-24.
[9] Xiaohe X, Falin C, Liangyu L, et al. Water Wall Tubes'High Temperature Corrosion Root Cause Investigation: A 300 MW Level Boiler Case[J]. Energies, 2023, 16(4): 1767.
[10] 吴戈杨,魏国华,王铭昊,等.四角切圆锅炉高温腐蚀区域研究[J].锅炉制造,2023(6):18-19,22. WU Geyang, WEI Guohua, WANG Minghao, et al. Study on High Temperature Corrosion Zone of Tangential Round Boiler [J]. Bolier Manufacture, 2023(6): 18-19, 22.
[11] 范景扬,王猛,庞龙,等.燃尽风率与贴壁风率对350 MW四角切圆锅炉高温腐蚀的影响[J].洁净煤技术,2023,29(2):172-179. FAN Jingyang, WANG Meng, PANG Long, et al. Effect of burnout air rate and wall air on high temperature corrosion of water wall of 350 MW tangentially tired bolier[J]. Clean Coal Technology, 2023, 29(2): 172-179.
[12] 薛晓垒,俞胜捷,陈敏,等.600 MW机组锅炉水冷壁区域还原性气氛影响因素分析[J].热力发电,2016,45(12):95-102,136. XUE Xiaolei, YU Shengjie, CHEN Min, et al. Influencing factors of reducing gas in water wall area of a 600 MW unit bolier [J]. Thermal Power Generation, 2016, 45(12): 95-102, 136.
[13] 吕嗣晨,王川保,赵军,等.煤粉燃烧过程中H2S生成详细机理研究[J].西安交通大学学报,2020,54(4):68-75. LYU Sichen, WANG Chuanbao, ZHAO Jun, et al. A Study on Detailed Mechanism of H2S Formation During Pulverized Coal Combusion[J]. Journel of Xi'an Jiaotong University, 2020, 54(4): 68-75.
[14] 马红和,周璐,马素霞,等.煤粉燃烧过程中H2S生成机理研究进展[J].热力发电,2019,48(1):1-5. MA Honghe, ZHOU Lu, MA Suxia, et al. Progress in mechanism of H2S formation during pulverized coal combusion [J]. Thermal Power Generation, 2019, 48(1): 1-5.
[15] 刘胜利,张海军,程建,等.1000 MW超超临界双切圆燃烧锅炉结焦与高温腐蚀防控研究[J].发电技术,2023,44(2):171-182. LIU Shengli, ZHANG Haijun, CHENG Jian, et al. Research on Slagging and High Temperature Corrosion Prevention and Control of a 1000 MW Ultra Supercritical Double Tangentially Fired Boiler[J]. Power Generation Technology, 2023, 44(2): 171-182.
[16] Yu-Xiu Z, Xin W, Gang X, et al. Investigation on slagging and high-temperature corrosion prevention and control of a 1000 MW ultra supercritical double tangentially fired boiler [J]. Energy, 2023: 275.
[17] 白健美,陈辉,黄林滨,等.1000 MW超超临界八角双切圆锅炉降低水冷壁高温腐蚀试验研究[J].电力科技与环保,2023,39(2):111-119. BAI Jianmei, CHEN Hui, HUANG Linbin, et al. Experimental study on reducing high temperature corrosion of water cold wall by 1000 MW supercritical octagonal double-cut round boiler[J]. Electric Power Environmental Protection, 2023, 39(2): 111-119.
[18] 周颖驰.锅炉水冷壁高温腐蚀原因分析及对策[J].热力发电, 2013,42(7):138-141. ZHOU Yingchi. High- temperature Corrosion of Water wall Tubes in a Supercritical Boiler: cause analyse and countermeasures [J]. Thermal Power Generation, 2013, 42(7): 138-141.
[19] 杨辉,张宇博,党黎军.水冷壁贴壁气氛测试与防止高温腐蚀对策研究[J].锅炉技术,2023,54(2):70-74. YANG Hui, ZHANG Yubo, DANG Lijun. Study on the Test of Near Water-Wall Atmosphere and the Countermeasures of High Temperature Corrosion[J]. Boiler Technology, 2023, 54(2): 70-74.
[20] 王毅斌,张思聪,谭厚章,等.劣质烟煤低氮燃烧模式下水冷壁高温腐蚀与硫化物沉积形成分析[J].中国电机工程学报,2020,40(24):8058-8066,8242. WANG Yibin, ZHANG Sicong, TAN Houzhang, et al. Analysis of High-temperature Corrosion and Sulfide Deposits Formed on Water-wall Tubes under Low-NOx Combustion Mode for Low-qualities Bituminous Coal[J]. Proceedings of the CSEE, 2020, 40(24): 8058-8066, 8242.
[21] 蔡勇,张兴龙,孙金龙.超超临界锅炉水冷壁高温腐蚀原因分析与防治[J].山东电力技术,2021,48(7):64-69. CAI Yong, ZHANG Xinglong, SUN Jinlong. Cause Analysis and Prevention of High Temperature Corrosion of Water Wall of Ultra Supercritical Boiler[J]. Shandong Electric Power, 2021, 48(7): 64-69.
[22] 冯强,张志刚,张世平,等.四角切圆锅炉H2S分布特性及贴壁风喷口研究[J].华北电力大学学报(自然科学版),2018,45(6):91- 99. FENG Qiang, ZHANG Zhigang, ZHANG Shiping, et al. Research on H2S Distribution Characteristics in Tangentially Fired Boiler and Nozzle of Near-wall Air[J]. Journal of North China Electric Power University, 2018, 45(6): 91-99.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0032
中图分类号:
引用信息:
[1]马彪, 刘成, 郭滔等.1000 MW双切圆锅炉高温腐蚀原因分析[J].内蒙古电力技术,2024,42(02):96-100.DOI:10.19929/j.cnki.nmgdljs.2024.0032.
基金信息: