nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg qikanlogo popupnotification paper
2024 03 20-27
考虑灵活性分析的典型光伏日出力率曲线提取方法
基金项目(Foundation): 内蒙古电力(集团)有限责任公司科技项目“电力系统灵活调节资源优化配置方法及智能决策系统研究”(2022-07)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2024.0036
中文作者单位:

内蒙古电力(集团)有限责任公司,呼和浩特 010010;浙江大学 电气工程学院,杭州 310027;3. 内蒙古电力(集团)有限责任公司内蒙古电力经济技术研究院分公司,呼和浩特 010010

摘要(Abstract):

为了在电力系统灵活性分析过程中,提取对系统灵活性影响较大的典型光伏日出力率曲线,提出一种考虑灵活性分析的典型光伏日出力率曲线提取方法, 确定对灵活性影响较大的光伏日发电曲线范围, 利用斯皮尔曼相关系数和随机贪心算法改进 K-means 聚类算法, 对光伏日出力率曲线进行聚类, 利用灰狼算法提取典型光伏日出力率曲线。 算例分析以蒙西电网2019—2022年光伏日出力数据为研究对象, 结果表明, 利用所提方法提取的典型光伏日出力率曲线, 能够有效反映光伏发电对系统灵活性的影响。

关键词(KeyWords): 电力系统灵活性;典型光伏日出力率曲线;K-means聚类;斯皮尔曼相关系数;随机贪心算法;灰狼算法
参考文献

[1] 鲁宗相,李海波,乔颖.含高比例可再生能源电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158. LU Zongxiang, LI Haibo, QIAO Ying. Planning and Challenges of Power Systems with a High Proportion of Renewable Energy Resources[J]. Automation of Electric Power Systems, 2016, 40(13): 147-158.
[2] 鲁宗相,林弋莎,乔颖,等.极高比例可再生能源电力系统的灵活性供需平衡[J].电力系统自动化,2022,46(16):3-16. LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility Supply and Demand Balance in Power Systems with an Extremely High Proportion of Renewable Energy[J]. Automation of Electric Power Systems, 2022, 46(16): 3-16.
[3] 陈雯,刘娟,赵爽,等.适应于高比例可再生能源系统灵活性资源配置[J].云南电力技术,2023,51(5):2-5,9. CHEN Wen, LIU Juan, ZHAO Shuang, et al. Rese on Peak Shaving and Energy Storage Requirements Suitable for High Proportion Renewable Energy Systems[J]. Yunnan Electric Power, 2023, 51(5): 2-5, 9.
[4] 童宇轩,金超.新型电力系统典型负荷侧资源灵活性价值分析[J].东北电力技术,2023,44(12):49-54,67. TONG Yuxuan, JIN Chao. Analysis of Resource Flexibility Value on Typical Load Side of New Power System[J]. Northeast Electric Power Technology, 2023, 44(12): 49-54, 67.
[5] Publishing O, Agency I E.Harnessing variable renewables[M]. Paris: OECD/IEA, 2011.
[6] 黄冯.面向电力系统分析的可再生能源典型场景生成方法[D].合肥:合肥工业大学,2019.
[7] 郝浩伟,周博文,张馨文.计及碳交易与需求响应的综合能源系统优化研究[J].东北电力技术,2022,43(10):32-37,43. HAO Haowei, ZHOU Bowen, ZHANG Xinwen. Research of Integrated Energy System Optimization Considering Carbon Trading and Demand Response[J]. Northeast Electric Power Technology, 2022, 43(10): 32-37, 43.
[8] 王建学,张耀,万筱钟.光伏出力特性指标体系和分类典型曲线研究[J].电力需求侧管理,2017,19(5):8-12. WANG Jianxue, ZHANG Yao, WAN Xiaozhong. Research on Photovoltaic Output Characteristics Indicator System and Classification of Typical Curves[J]. Power Demand Side Management, 2017, 19(5): 8-12.
[9] 王建学,张耀,万筱钟,等.面向电网运行的新能源出力特性指标体系研究--风电出力特性指标体系[J].电网与清洁能源,2016, 32(2):42-51,57. WANG Jianxue, ZHANG Yao, WAN Xiaozhong, et al. Research on New Energy Output Characteristics Indicator System for Power Grid Operation- Wind Power Output Characteristics Indicator System[J]. Power System and Clean Energy, 2016, 32(2): 42-51, 57.
[10] 王群,董文略,杨莉.基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法[J].中国电机工程学报,2015, 35(11):2654-2661. WANG Qun, DONG Wenlue, YANG Li. Algorithm for Generating Classical Scenario Sets for Wind and Photovoltaic Based on Wasserstein Distance and Improved K- medoids Clustering[J]. Proceedings of the CSEE, 2015, 35(11): 2654- 2661.
[11] 邬浩泽,朱晨烜,张贻山,等.一种基于改进模糊聚类算法的自适应典型日选取方法[J].智慧电力,2022,50(1):60-67. WU Haoze, ZHU Chenxuan, ZHANG Yishan, et al. An Adaptive Typical Day Selection Method Based on Improved Fuzzy Clustering Algorithm[J]. Smart Power, 2022, 50(1): 60- 67.
[12] 林俐,费宏运,刘汝琛,等.基于分层聚类算法的地区风电出力典型场景选取方法[J].电力系统保护与控制,2018,46(7):1-6. LIN Li, FEI Hongyun, LIU Ruchen, et al. Regional Wind Power Output Typical Scenario Selection Method Based on Hierarchical Clustering Algorithm[J]. Power System Protection and Control, 2018, 46(7): 1-6.
[13] 胡啸,王玲燕,张浩宇,等.基于狮群优化的改进K-Means聚类算法研究[J].控制工程,2022,29(11):1996-2002. HU Xiao, WANG Lingyan, ZHANG Haoyu, et al. Study on Improved K-Means Clustering Algorithm Based on Lion Group Optimization[J]. Control Engineering of China, 2022, 29(11): 1996-2002.
[14] 吴亚雄,高崇,曹华珍,等.基于灰狼优化聚类算法的日负荷曲线聚类分析[J].电力系统保护与控制,2020,48(6):68-76. WU Yaxiong, GAO Chong, CAO Huazhen, et al. Day Load Curve Clustering Analysis Based on Grey Wolf Optimization Clustering Algorithm[J]. Power System Protection and Control, 2020, 48(6): 68-76.
[15] 白斌,韩明亮,林江,等.含风电和光伏的可再生能源场景削减方法[J].电力系统保护与控制,2021,49(15):141-149. BAI Bin, HAN Mingliang, LIN Jiang, et al. Renewable Energy Scenario Curtailment Methods Including Wind and Photovoltaic[J]. Power System Protection and Control, 2021, 49(15): 141-149.
[16] 郑超,杨明亮,吴琛,等.计算步长对新能源高占比电网调度运行优化的影响[J].云南电力技术,2022,50(3):36-41. ZHENG Chao, YANG Mingliang, WU Chen, et al. The Effect of Sampling in the Optimal Operation of the Renewable-Source- Dominated Power Gird[J]. Yunnan Electric Power, 2022, 50(3): 36-41.
[17] 张勋奎.以新能源为主体的新型电力系统发展路线图[J].分布式能源,2021,6(6):1-8. ZHANG Xunkui. A Roadmap for Developing a New Power System With New Energy as the Main Body[J]. Distributed Energy, 2021, 6(6): 1-8.
[18] LiKas A, Vlassis N, VerbeeK J J. The Global K-Means Clustering Algorithm[J]. Pattern Recognition, 2002, 36(2): 451-461.
[19] Zhou H B, Gao J T. Automatic Method for Determining Cluster Number Based on Silhouette Coefficient[J]. Advanced Materials Research, 2014(951): 227-230.
[20] Lovie, A. D. Who discovered Spearman's rank correlation[J]. British Journal of Mathematical& Statistical Psychology, 2011, 48(2): 255-269.
[21] Bouamama S, Blum C. A randomized population-based iterated greedy algorithm for the minimum weight dominating set problem[C]//IEEE. 20156th International Conference on Information and Communication Systems. Amman: Jordan, 2015: 7-12.
[22] Mirjalili S, Mirjalili S M, Lewis A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
[23] Saremi S, Mirjalili S Z, Mirjalili S M. Evolutionary population dynamics and grey wolf optimizer[J]. Neural Computing& Applications, 2015(26): 1257-1263.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2024.0036

中图分类号:

引用信息:

[1]呼斯乐1,2,于源1,王渊3等.考虑灵活性分析的典型光伏日出力率曲线提取方法[J].内蒙古电力技术,2024,42(03):20-27.DOI:10.19929/j.cnki.nmgdljs.2024.0036.

基金信息:

内蒙古电力(集团)有限责任公司科技项目“电力系统灵活调节资源优化配置方法及智能决策系统研究”(2022-07)

检 索 高级检索