2 | 0 | 36 |
下载次数 | 被引频次 | 阅读次数 |
为了提高球磨机的磨粉效果,利用离散元软件EDEM和ANSYS进行仿真模拟试验分析。结果表明:圆形衬板的最大磨损量为6.013 8×e25,矩形衬板的最大磨损量为7.547 4×e-6,双波形衬板的最大磨损量为2.762 1×e-7。通过分析可知,双波形结构的衬板磨损量最小; 1—6阶各阶模态频率、激振频率远低于最小阶固有频率0.236 58 Hz,不会发生剧烈振动;滚筒的驱动频率与磨球的冲击频率远小于筒体的各阶固有频率,筒体结构的固有频率对于筒体的振动幅度影响不大。用优化前后的设备对同批样品进行试验,设备优化前的产品颗粒直径平均为108.9 μm,优化后平均为48.1 μm,颗粒直径明显变小且更稳定,说明优化后磨粉效果更好。
Abstract:In order to improve the grinding effect of the ball mill, the author makes use of the discrete element software EDEM and ANSYS for simulated experimental analysis. The results show that the maximum wear of the round liner is 6.013 8×e25, the maximum wear of the rectangular liner is 7.547 4×e-6, and the maximum wear of the double waveform liner is 2.762 1×e-7. Through analysis, it can be conducted that the wear of liners with double-waveform structure is the smallest. It is found that the model frequency and the excitation frequency of the 1st to 6th order are much lower than the minimum natural frequency of 0.236 58 Hz, and no violent vibration occurs. The driving frequency of the drum and the impact frequency of the grinding ball are much smaller than the natural frequencies of each order of the cylinder, and the natural frequencies of the cylinder structure has little effect on the vibration amplitude of the cylinder. The same batch of samples are tested by equipment before and after optimization. The average particle diameter of the product before equipment optimization is 108.9 μm, and the average after optimization is 48.1 μm. The particle diameter is significantly smaller and more stable, indicating that the optimized grinding effect is better.
[1] 郑水林.中国超细粉碎和精细分级技术现状及发展[J].现代化工, 2001(11):10-15. 图14设备优化前后硅微粉粒径大小Fig.14 Particle size of silicon micro powder before and after equipment optimization 01 23 45 67 89 1011811611411211010810610449.048.548.047.547.0取样时间/h粒径/μm图15设备优化前后硅微粉扫描图Fig.15 Scanning images of silicon micro powder before and after equipment optimization (a)优化前(b)优化后图中: —优化前粒径; —优化后粒径。 ZHENG Shuilin. Progress of ultra-fine grinding and classifying techniques in China[J]. Modern Chemical Industry, 2001(11): 10- 15.
[2] 朱万信.超细粉制备工艺分析与实验研究[J].水泥工程,2016(5): 23-26,33. ZHU Wanxin. Experiment research and analysis on ultrafine particle preparation process[J]. Cement Engineering, 2016(5): 23-26, 33.
[3] 张更超,应富强.超细粉碎技术现状及发展趋势[J].中国粉体技术,2003(2):44-48. ZHANG Gengchao,YING Fuqiang. Current situation and development trend of ultrafine grinding technology[J]. China Powder Science and Technology, 2003(2): 44-48.
[4] 邝伟.物料振动筛分过程分析及高效途径[J].中国设备工程,2019(9):209-210. KUANG Wei. Process Analysis and efficient way of Material vibrating screening[J]. China Plant Engineering, 2019(9): 209-210.
[5] 裴英杰,肖庆飞,石贵明,等.离散元法在球磨机仿真中的研究进展及应用[J].黄金,2022,43(1):69-77. PEI Yingjie, XIAO Qingfei, SHI Guiming, et al. Research progress and application of discrete element Method in ball Mill simulation[J]. Gold, 2022, 43(1): 69-77.
[6] 赵士英.球磨机转速与磨球大小对效率及能耗影响的研究[D].青岛:山东科技大学,2019.
[7] BOR A, JARGALSAIKHAN B, URANCHIMEG K, et al. Particle morphology control of metal powder with various experimental conditions using ball milling[J]. Powder Technology, 2021, 394: 181-190.
[8] 宗路,郭晋,蔡改贫,等.球磨机筒体结构优化及数值模拟分析[J].化工矿物与加工,2018,47(6):14-19.
[9] AMANNEJAD M, BARANI K. Effects of ball size distribution and Effects of ball size distribution and mill speed and their interactions on ball milling using DEM[J]. Mineral Processing and Extractive Metallurgy Review, 2021, 42(6): 374-379.
[10] 黄佳雯,易嘉琦,李汶洁,等.基ADAMS软件对干法成形多层组合式连续球磨机粗磨系统的仿真与运动学分析[J].中国陶瓷工业,2021,28(4):26-29. HUANG Jiawen, YI Jiaqi, LI Wenjie, et al. Simulation and Kinematics Analysis of Dry Forming Multi-layer Combined Continuous Ball Mill Coarse Grinding System Based on ADAMS Software[J]. China Ceramic Industry, 2021, 28(4): 26- 29.
[11] 孔祥军,陈长征,王仲,等.基于有限元和试验的球磨机筒体的模态分析[J].矿山机械,2011,39(8):83-85. KONG Xiangjun,CHEN Changzheng,WANG Zhong,et al. Modal analysis of grinding tube of ball mill based on FEM and tests[J]. Mining & Processing Equipment, 2011, 39(8): 83- 85.
[12] 瞿铁,边强,唐必亮,等.基于EDEM球磨机颗粒的分布与接触特性分析[J].有色金属(选矿部分),2022(6):135-140. QU Tie,BIAN Qiang,TANG Biliang,et al. Analysis of Particle Distribution and Contact Characteristics of Ball Mill Based on EDEM[J]. Nonferrous Metals(Mineral Processing Section), 2022(6): 135-140.
[13] 李杲.MQG2700×2100湿式格子型球磨机筒体动态性能分析[J].河西学院学报,2014,30(5):75-81. LI Gao. On the Dynamic Property of MQG2700× 2100 Wet Ball Mill Cylinder[J]. Journal of Hexi University, 2014, 30(5): 75-81.
[14] 袁文彬,孙欣,金凯,等.不同研磨介质填充率下球磨机内钢球碰撞研究[J].矿冶工程,2023,43(4):57-60. YUAN Wenbin,SUN Xin,JIN Kai,et al. Investigation on Collision of Steel Balls in Ball Mills with Varied Filling Rates of Grinding Media[J]. Mining and Metallurgical Engineering, 2023, 43(4): 57-60.
[15] 王晓,张长献,薛玉君,等.基于EDEM的球磨机不同填充率下颗粒碰撞与能量变化探究[J].矿山机械,2019,47(8):29-34. WANG Xiao, ZHANG Changxian, XUE Yujun,et al. Research on particle collision and energy variation at various filling ratio of ball mill based on EDEM[J]. Mining & Processing Equipment, 2019, 47(8): 29-34.
[16] Bogdanov V S, Khakhalev P A, Bogdanov N E, et al. The Application of EDEM Software for Design Parameters Calculation of a Ball Mill Lining[J]. Research Journal of Applied Sciences, 2014, 9(11): 869-873.
[17] 于洪军,于浩男,宋传颂馨,等.基于DEM分析的球磨机弧形筒体衬板的结构优化研究[J].矿山机械,2021,49(12):32-36. YU Hongjun, YU Haonan, SONG Chuansongxin,et al. Research on structural optimization of arced shell liner of ball mill based on DEM analysis[J]. Mining & Processing Equipment, 2021, 49(12): 32-36.
[18] 郭子利,王会刚,李振虎,等.基于Ansys球磨机简体有限元分析[J].机床与液压,2009,37(7):199-201. GUO Zili,WANG Huigang,LI Zhenhu,et al. FEM Analysis of the Ball Milling Machine Cylinder Based on ANSYS[J]. Machine Tool & Hydraulics, 2009, 37(7): 199-201.
[19] 李云啸,肖庆飞,国宏臣,等.基于离散元法的球磨机筒体衬板改型优化研究[J].矿产保护与利用,2023,43(4):43-49. LI Yunxiao, XIAO Qingfei, GUO Hongchen, et al. Optimization of Barrel Liner Modification of Ball Mill Based on Discrete Element Method[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 43-49.
[20] 朴香兰,刘怀礼.基于Ansys Workbench的球磨机筒体设计[J]. 煤矿机电,2018,227(4):26-29. PIAO Xianglan,LIU Huaili. Design of Ball Mill Cylinder Based on Ansys Workbench[J]. Colliery Mechanical & Electrical Technology, 2018, 227(4): 26-29.
[21] 刘义,邹声勇,李济顺.基于有限单元法的溢流型球磨机可靠性分析[J].矿山机械,2019,47(9):40-44. LIU Yi, ZOU Shengyong, LI Jishun. Reliability analysis on overflow ball mill based on finite element method[J]. Mining & Processing Equipment, 2019, 47(9): 40-44.
[22] 代斌.球磨机机筒的应力有限元分析[J].机械管理开发,2023,38(5):58-59,62. DAI Bin. Element Analysis of Stress in Ball Mill Barrel[J]. Mechanical Management and Development, 2023, 38(5): 58-59, 62.
[23] 尹自信,王楠.不同转速率下球磨机介质运动状态分布行为研究[J].有色金属(选矿部分),2022(3):118-123. YIN Zixin,WANG Nan. Study on Distribution Behavior of Medium Motion State in Ball Mill at Different Rotation Rate [J]. Nonferrous Metals(Mineral Processing Section), 2022(3): 118-123.
[24] 郑伟.脱硫湿式球磨机甩料分析及处理[J].东北电力技术,2023, 44(5):51-54. ZHENG Wei. Analysis and Processing of Material Throwing in Desulfurization Wet Ball Mill[J]. Northeast Electric Power Technology, 2023, 44(5): 51-54.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2024.0031
中图分类号:
引用信息:
[1]陈艳艳, 曾其良, 郭纯等.基于ANSYS/EDEM的球磨机筒体优化仿真分析[J].内蒙古电力技术,2024,42(02):89-95.DOI:10.19929/j.cnki.nmgdljs.2024.0031.
基金信息:
安徽省自然科学基金项目“非晶-纳米晶双相结构复合涂层设计、制备及性能研究”(1908085QE174);安徽省自然科学项目“农机装备零部件表面防护技术研究”(2023AH040273);凤阳县科技振兴项目“TFT硅微粉末自动化成套装备设计及关键技术研究”(880839)