nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 05, 22-27
海上升压站桩靴式导管架基础设计与数值分析
基金项目(Foundation): 中国能源建设集团广东省电力设计研究院有限公司科技项目“海上升压站详细设计”(EV03131W)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2022.0076
摘要:

对桩靴式海上升压站导管架基础开展了深入研究,经过理论研究和计算分析,形成一套能够应用于实际工程的设计方法。桩靴式海上升压站导管架基础与传统的桩腿式基础相比,桩径不受导管架主腿截面限制,可调空间较大;此外该基础的钢管桩桩长可控,施工风险更低。综上所述,桩靴式海上升压站导管架基础适用水深范围更广,对于表层存在深厚软土的地质条件也可适用。

Abstract:

In this paper, the pile shoe jacket foundation of offshore substation is deeply studied. Through theoretical research and calculation analysis, a set of design methods that can be applied to practical engineering are formed. Compared with the traditional pile leg jacket foundation, the pile diameter of the shoe jacket foundation of offshore substation is not limited by the section of main leg of jacket and the pile length is controllable which reduces the construction risk. In conclusion, the shoe pile jacket foundation of offshore substation is applicable to a wider range of water depth and to the geological conditions with deep soft soil on the surface.

参考文献

[1] 陈建民, 娄敏, 王天霖.海洋石油平台设计[M].北京:石油工业出版社, 2012.

[2] 张力, 刘晋超.海上变电站结构设计探讨[J].南方能源建设, 2015, 2(增刊1):83-87. ZHANG Li, LIU Jinchao. Discussion on structural design method of offshore substation[J]. Southern Energy Construction, 2015, 2(S1):83-87.

[3] 刘全刚, 连鑫, 冯英磊.导管架裙桩套筒的吊装安装[J].石油化工建设, 2016, 38(5):47-49.

[4] 水电水利规划设计总院.风电场工程110 kV~220 kV海上升压变电站设计规范:NB/T 31115-2017[S].北京:中国电力出版社, 2017.

[5] 水电水利规划设计总院.风电场工程等级划分及设计安全标准:NB/T 10101-2018[S].北京:中国水利水电出版社, 2018.

[6] 陈珂, 马兆荣.海上升压站裙桩型导管架基础设计分析[J]. 南方能源建设, 2018, 5(2):93-98. CHEN Ke, MA Zhaorong. Design analysis of offshore substation with skirt pile jacket foundation[J]. Southern Energy Construction, 2018, 5(2):93-98.

[7] 刘福来, 张略秋, 武江.海上风电场海上升压站抗震设计[J].武汉大学学报(工学版), 2013, 46(增刊1):144-147. LIU Fulai, ZHANG Lueqiu, WU Jiang. Seismic design of offshore substation for offshore wind power farms[J]. Engineering Journal of Wuhan University, 2013, 46(S1):144-147.

[8] 范少涛, 张力, 王立鹤, 等.海上升压站的抗震性能分析[J]. 南方能源建设, 2019, 6(4):101-105. FAN Shaotao, ZHANG Li, WANG Lihe, et al. Seismic performance analysis of offshore substation[J]. Southern Energy Construction, 2019, 6(4):101-105.

[9] 惠丹, 王进.浅水裙桩导管架的安装工艺[J].中国修船, 2013, 26(6):46-49.

[10] DNV GL. Support structures for wind turbines:DNV GL-ST-0126-2018[S]. Oslo:DNVGL, 2018.

[11] 陈涛, 姚政韬, 王衔, 等.海上风机灌浆连接段应力评价方法探析[J].南方能源建设, 2020, 7(1):33-39. CHEN Tao, YAO Zhengtao, WANG Xian, et al. A stress evaluation method for grouted connections of offshore wind turbines[J]. Southern Energy Construction, 2020, 7(1):33-39.

[12] 徐荣彬, 元国凯, 刘晋超, 等.海上风机导管架基础灌浆连接段受力分析[J].南方能源建设, 2015, 2(3):80-85. XU Rongbin, YUAN Guokai, LIU Jinchao, et al. Analysis of grouted connection in offshore wind turbine jacket foundation[J]. Southern Energy Construction, 2015, 2(3):80-85.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2022.0076

中图分类号:

引用信息:

[1]郑灿,刘旭东,冯奕敏等.海上升压站桩靴式导管架基础设计与数值分析[J].内蒙古电力技术,2022(05):22-27.DOI:10.19929/j.cnki.nmgdljs.2022.0076.

基金信息:

中国能源建设集团广东省电力设计研究院有限公司科技项目“海上升压站详细设计”(EV03131W)

检 索 高级检索