nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 02, 86-94
大型煤粉锅炉细颗粒物生成与痕量元素分布特性研究
基金项目(Foundation): 国家自然科学基金青年基金“煤粉氧/水蒸气燃烧中的矿物质迁移和细颗粒物生成机制”(51806075);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题资助“氨-煤混燃过程中的矿物质迁移及颗粒物生成机理研究”(2022-K01)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2023.0031
摘要:

为了研究燃煤过程中痕量元素的迁移行为及其向细颗粒物、飞灰中的迁移特性和分布规律,采用承重撞击器和烟尘采样仪对某1000 MW煤粉锅炉除尘器入口处烟气中的PM10和总飞灰进行现场采样。同时结合X射线荧光探针分析、微波消解、电感耦合等离子质谱和痕量元素淋滤特性测定,分析了PM10的生成特性和痕量元素As、Cr、Pb和Mn在不同粒径颗粒物中的分布特性及富集规律。结果显示,其生成的PM1和PM2.5的质量浓度分别为14.85 mg/m3和74.41 mg/m3,相应的灰基PM1和PM2.5产率分别为1.31×10-3和6.55×10-3,结合已有文献分析显示,PM1和PM2.5的灰基产率与煤中灰质量分数呈现一定的负相关关系。As和Cr在PM0.2~0.5中发生了显著富集,富集因子分别为17.58和4.05;Pb和Mn未在小粒径颗粒物中发生显著富集。总灰中四种痕量元素均主要以残渣态存在,痕量元素Cr具有最高的浸出风险,其次是As,Mn和Pb的浸出风险小于Cr和As。

Abstract:

In order to study the migration behavior of trace elements to fine particles and fly ash in the process of coal burning, a load-bearing impactor and a smoke sampler are used to sample PM10 and total fly ash in the flue gas at the inlet of a 1000 MW pulverized coal boiler dust collector. Combined with X -ray fluorescence probe analysis, microwave digestion, inductively coupled plasma mass spectrometry and determination of trace element leaching characteristics, the formation characteristics of PM10 and the distribution characteristics and enrichment rules of trace elements As, Cr, Pb and Mn in different particle sizes are analyzed. The results shows that the mass concentrations of PM1 and PM2.5 generated by the method are 14.85 mg/m3 and 74.41 mg/m3 respectively, and the corresponding yields of gray-rbased PM1 and PM2.5 are 1.31×10-3 and 6.55×10-3 respectively. Combined with the existing literature analysis, the ash base yield of PM1 and PM2.5 is negatively correlated with the ash mass fraction in coal. As and Cr are significantly enriched in PM0.2~0.5 with enrichment factors of 17.58 and 4.05 respectively. Pb and Mn are not significantly enriched in small particle size. Four trace elements in total ash mainly exist in residual state, and trace element Cr has the highest leaching risk, followed by As, and Mn and Pb have lower leaching risk than that of Cr and As.

参考文献

[1] 中电联发布2019~2020年度全国电力供需形势分析预测报告[J]. 中国电力企业管理,2020(1):7-8.

[2] Linak W P, Wendt J O L. Toxic metal emissions from incineration: mechanisms and control[J]. Progress in Energy and Combustion Science, 1993, 19(2): 145-185.

[3] Nel A. Air pollution-related illness: effects of particles[J]. Science, 2005, 308(5723): 804-806.

[4] Xu M, Yu D, Yao H, et al. Coal combustion-generated aerosols: Formation and properties[J]. Proceedings of the Combustion Institute, 2011, 33(1): 1681-1697.

[5] Xu M, Yan R, Zheng C, et al. Status of trace element emission in a coal combustion process: a review[J]. Fuel Processing Technology, 2004, 85(2-3): 215-237.

[6] McElroy M W, Carr R C, Ensor D S, et al. Size distribution of fine particles from coal combustion[J]. Science, 1982, 215(4528): 13-19.

[7] Du Q, Dong H, Su L, et al. Influence of Boiler Load on Generation Characteristics of PM2.5 Generated by a 660 MW Pulverized Coal Boiler[J]. Energy & Fuels, 2016, 30(5): 4300-4306.

[8] Wang C, Liu X, Li D, et al. Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2793- 2800.

[9] Liu X, Xu Y, Fan B, et al. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 2. Studies on two 135 MW circulating fluidized bed boilers respectively equipped with an electrostatic precipitator and a hybrid electrostatic filter precipitator[J]. Energy & Fuels, 2016, 30(7): 5922-5929.

[10] Xu Y, Liu X, Zhang Y, et al. Field measurements on the emission and removal of PM2.5 from coal - fired power stations: 3. Direct comparison on the PM removal efficiency of electrostatic precipitators and fabric filters[J]. Energy & Fuels, 2016, 30(7): 5930-5936.

[11] Xu Y, Liu X, Wang H, et al. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000 MW coal-fired power station[J]. Environmental Science & Technology, 2018, 52(15): 8718-8724.

[12] Xu Y, Liu X, Cui J, et al. Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 4. PM removal performance of wet electrostatic precipitators[J]. Energy & Fuels, 2016, 30(9): 7465-7473.

[13] Rajabzadeh M A, Ghorbani Z, Keshavarzi B. Chemistry, mineralogy and distribution of selected trace - elements in the Parvadeh coals, Tabas, Iran[J]. Fuel, 2016, 174: 216-224.

[14] Wang C, Liu X, Li D, et al. Effect of H2O and SO2 on the distribution characteristics of trace elements in particulate matter at high temperature under oxy-fuel combustion[J]. International Journal of Greenhouse Gas Control, 2014, 23: 51-60.

[15] 张军营,郑楚光,刘晶,等.燃煤易挥发微量重金属元素行为的试验研究[J].工程热物理学报,2003,24(6):1043-1046. ZHANG Junying, ZHENG Chuguang, LIU Jing, et al. Experimental study on volatility of trace metals in coal combustion[J]. Journal of Engineering Thermophysics, 2003, 24(6): 1043-1046.

[16] Xu M, Qiao Y, Liu J, et al. Kinetic calculation and modeling of trace element reactions during combustion[J]. Powder technology, 2008, 180(1-2): 157-163.

[17] Ratafia-Brown J A. Overview of trace element partitioning in flames and furnaces of utility coal - fired boilers[J]. Fuel Processing Technology, 1994, 39(1-3): 139-157.

[18] 王超,刘小伟,吴望晨,等.O2/CO2条件下燃煤颗粒物中As和Pb的分布规律研究[J].工程热物理学报,2013,34(4):783-786. WANG Chao, LIU Xiaowei, WU Wangchen, et al. The distribution characteristics of As and Pb in particulate matters under O2/CO2 combustion of coal[J]. Journal of Engineering Thermophysics, 2013, 34(4): 783-786.

[19] 周玲妹,王晓兵,郭豪,等.煤中重金属赋存对其释放行为影响的研究进展[J].洁净煤技术,2018,24(6):8-13. ZHOU Lingmei, WANG Xiaobing, GUO Hao, et al. Research progress on influence of heavy metal occurrence mode on release behavior during coal conversion[J]. Clean Coal Technology, 2018, 24(6): 8-13.

[20] Wu H, Glarborg P, Frandsen F J, et al. Trace elements in co - combustion of solid recovered fuel and coal[J]. Fuel processing technology, 2013, 105: 212-221.

[21] Duan P, Wang W, Liu X, et al. Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high - sulfur coal, Yunnan Province, China[J]. International Journal of Coal Geology, 2017, 173: 129-141.

[22] 赵永椿.煤燃烧矿物组合演化及其与重金属相互作用机制的研究[D].武汉:华中科技大学,2008.

[23] Sekine Y, Sakajiri K, Kikuchi E, et al. Release behavior of trace elements from coal during high - temperature processing [J]. Powder Technology, 2008, 180(1-2): 210-215.

[24] Liu R, Yang J, Xiao Y, et al. Fate of Forms of arsenic in Yima coal during pyrolysis[J]. Energy & fuels, 2009, 23(4): 2013-2017.

[25] Smith R D. The trace element chemistry of coal during combustion and the emissions from coal-fired plants[J]. Progress in Energy and Combustion Science, 1980, 6(1): 53-119.

[26] Swanson S M, Engle M A, Ruppert L F, et al. Partitioning of selected trace elements in coal combustion products from two coal-burning power plants in the United States[J]. International Journal of Coal Geology, 2013, 113: 116-126.

[27] 岳勇,姚强,宋蔷,等.不同煤燃烧源排放的PM10形态及重金属分布的对比研究[J].中国电机工程学报,2007(35):33-38. YUE Yong, YAO Qiang, SONG Qiang, et al. Comparative study on PM10 microstructure and heavy metals distribution in emissions of coal combustion sources[J]. Proceedings of the CSEE, 2007(35): 33-38.

[28] 岳勇,陈雷,姚强,等.燃煤锅炉颗粒物粒径分布和痕量元素富集特性实验研究[J].中国电机工程学报,2005(18):74-79. YUE Yong, CHEN Lei, YAO Qiang, et al. Experimental study on characteristics of particulate matter size distribution and trace elements enrichment in emissions from a pulverized coal-fired boiler[J]. Proceedings of the CSEE, 2005(18): 74-79.

[29] Yi H, Hao J, Duan L, et al. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(10-11): 2050- 2057.

[30] 王超,刘小伟,吴建群,等.220 MW热电联产锅炉中痕量元素的迁移及分布特性[J].化工学报,2014,65(9):3604-3608. WANG Chao, LIU Xiaowei, WU Jianqun, et al. Migration and distribution characteristics of trace elements in 220 MW cogeneration boiler[J]. CIESC Journal, 2014, 65(9): 3604-3608.

[31] 王超,刘小伟,徐义书,等.660 MW燃煤锅炉细微颗粒物中次量与痕量元素的分布特性[J].化工学报,2013,64(8):2975-2981. WANG Chao, LIU Xiaowei, XU Yishu, et al. Distribution characteristics of minor and trace elements in fine particulate matters from a 660 MW coal - fired boiler[J]. CIESC Journal, 2013, 64(8): 2975-2981.

[32] 赵继尧,唐修义,黄文辉.中国煤中微量元素的丰度[J].中国煤田地质,2002(增刊1):6-14,18. ZHAO Jiyao, TANG Xiuyi, HUANG Wenhui. Abundance of trace elements in coal of China[J]. Coal Geology of China, 2002(S1): 6-14, 18.

[33] 龚勋.典型西部粉煤灰中重金属元素淋滤特性研究[D].武汉:华中科技大学,2010.

[34] Si J, Liu X, Xu M, et al. Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal[J]. Applied Energy, 2014, 114: 434-444.

[35] 盘思伟,张凯,张宇,等.660 MW燃煤机组PM2.5生成与排放特性[J].热力发电,2016(10):29-34. PAN Siwei, ZHANG Kai, ZHANG Yu, et al. Formation and emission characteristics of PM2.5 in a 660 MW coal-fired unit [J]. Thermal Power Generation, 2016(10): 29-34.

[36] Nielsen M T, Livbjerg H, Fogh C L, et al. Formation and emission of fine particles from two coal-fired power plants[J]. Combustion Science and Technology, 2002, 174(2): 79-113.

[37] Wang H L, Hao Z P, Zhuang Y H, et al. Characterization of inorganic components of size-segregated particles in the flue gas of a coal-fired power plant[J]. Energy & Fuels, 2008, 22(3): 1636-1640.

[38] 赵志锋,杜谦,赵广播,等.燃煤电厂煤粉炉及CFB锅炉PM2.5产生及排放特性的现场实验研究[J].化工学报,2015,66(3):1163- 1170. ZHAO Zhifeng, DU Qian, ZHAO Guangbo, et al. Field experimental research on PM2.5 generation and emission characteristics of pulverized coal and CFB boilers in power plants[J]. CIESC Journal, 2015, 66(3): 1163-1170.

[39] 王贺飞.煤中砷的赋存形态及其释放特性研究[D].北京:华北电力大学,2018.

[40] 韩军,王光辉,徐明厚,等.煤燃烧和热解过程中As和Se的挥发实验[J].华中科技大学学报(自然科学版),2009,37(5):113- 115,119. HAN Jun, WANG Guanghun, XU Minghou, et al. Experimental study of As and Se′ s vaporization during coal combustion and pyrolysis[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2009, 37(5): 113- 115, 119.

[41] Owens T M, WU C Y U, BISWAS P. An equilibrium analysis for reaction of metal compounds with sorbents in high temperature systems[J]. Chemical Engineering Communications, 1995, 133(1): 31-52.

[42] 郑楚光.燃煤痕量元素迁移转化机理及细微颗粒物中富集规律的研究[J].太原理工大学学报,2010,41(5):651-656. ZHENG Chuguang. Study on partition and enrichment of trace elements in fine particulate matter during coal combustion [J]. Journal of Taiyuan University of Technology, 2010, 41(5): 651-656.

[43] Mahuli S, Agnihotri R, Chauk S, et al. Mechanism of arsenic sorption by hydrated lime[J]. Environmental Science & Technology, 1997, 31(11): 3226-3231.

[44] Gale T K, Wendt J O L. High-temperature interactions between multiple - metals and kaolinite[J]. Combustion and Flame, 2002, 131(3): 299-307.

[45] Gale T K, Wendt J O L. In-furnace capture of cadmium and other semi - volatile metals by sorbents[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2999-3007.

[46] Scotto M V, Uberoi M, Peterson T W, et al. Metal capture by sorbents in combustion processes[J]. Fuel Processing Technology, 1994, 39(1-3): 357-372.

[47] Uberoi M, Shadman F. Sorbents for removal of lead compounds from hot flue gases[J]. AIChE Journal, 1990, 36(2): 307-309.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2023.0031

中图分类号:

引用信息:

[1]夏云飞1,徐义书2,余荣浩2等.大型煤粉锅炉细颗粒物生成与痕量元素分布特性研究[J].内蒙古电力技术,2023(02):86-94.DOI:10.19929/j.cnki.nmgdljs.2023.0031.

基金信息:

国家自然科学基金青年基金“煤粉氧/水蒸气燃烧中的矿物质迁移和细颗粒物生成机制”(51806075);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题资助“氨-煤混燃过程中的矿物质迁移及颗粒物生成机理研究”(2022-K01)

检 索 高级检索