624 | 0 | 85 |
下载次数 | 被引频次 | 阅读次数 |
针对我国北方地区电网在迎峰度冬期间面临的寒潮天气影响、供暖和用电负荷需求增加的问题,提出提高寒潮天气下新能源功率预测的准确率,以有效解决“保供电”和“保消纳”之间的矛盾。根据寒潮天气影响风电运行的过程,将寒潮天气特征分为风机覆冰、大风切机、低温脱网和晴冷无风四种类型。分析了各种寒潮类型对风电运行的影响机理,并结合内蒙古东部地区典型案例研究了寒潮影响风电功率预测的偏差规律。基于上述分析,在管理和技术方面提出了加强寒潮天气的预测预警工作、开展新能源功率预测系统升级改造等提升风电功率预测性能的建议,以提高寒潮天气下风电预测的准确率。
Abstract:In view of the problems of cold wave weather influence, heating and power load demand increase faced by the power grids in winter of Northern China, the author proposes to improve the accuracy of new energy power forecast under cold wave weather, so as to effectively solve the contradiction between power supply protection and consumption protection. According to the process of cold wave weather affecting wind power operation, the characteristics of cold wave weather are divided into four types:fan icing, wind cutter, low temperature off-grid and sunny cold without wind. The influence mechanism of various cold wave types on wind power operation is analyzed in detail, and the deviation rule of cold wave influence on wind power forecast is studied in combination with a typical case in the east of Inner Mongolia. Based on the above analysis, put forward the suggestions in terms of management and technology, such as strengthening the forecasting and early warning of cold wave weather, upgrading the new energy power forecasting system to improve the wind power forecasting performance, so as to improve the accuracy of wind power forecasting in cold wave weather.
[1] 国家发展改革委, 国家能源局.关于促进新时代新能源高质量发展的实施方案:国办函[2022] 39号[A/OL].(2022-05-14)[2022-05-30].https://www.gov.cn/zhengce/content/2022-05/30/content_5693013.htm.
[2] 单葆国, 冀星沛, 许传龙, 等.近期全球能源供需形势分析及中国能源电力保供策略[J].中国电力, 2022, 55(10):1-13. SHAN Baoguo, JI Xingpei, XU Chuanlong, et al. Recent Global Energy Supply-Demand Situation and Guarantee Strategy of China's Energy and Power Supply[J]. Electric Power, 2022, 55(10):1-13.
[3] 张康, 孙国文.电力保供的当下之计与长远之策[J].中国电力企业管理, 2022(7):57-59. ZHANG Kang, SUN Guowen. Current and long-term strategies for power supply assurance[J]. China Power Enterprise Management, 2022(7):57-59.
[4] 檀丛青, 王志奇, 陈柳明, 等.高寒高海拔地区风光互补热电联供系统多目标优化研究[J].分布式能源, 2020, 5(4):43-50. TAN Congqing, WANG Zhiqi, CHEN Liuming, et al. Multi Objective Optimization of Wind-Solar Hybrid Heat and Power Generation System in Frigid and High-Altitude Area[J]. Distributed Energy, 2020, 5(4):43-50.
[5] 汪扬.迎峰度冬供电的综合因素和保障措施分析[J].电工技术, 2021(12):161-163. WANG Yang. Analysis of Comprehensive Factors and Guarantee Measures of Power Supply during Peak Winter[J]. Electric Engineering, 2021(12):161-163.
[6] 王伟胜, 王铮, 董存, 等.中国短期风电功率预测技术现状与误差分析[J].电力系统自动化, 2021, 45(1):17-27. WANG Weisheng, WANG Zheng, DONG Cun, et al. Status and Error Analysis of Short-term Forecasting Technology of Wind Power in China[J]. Automation of Electric Power System, 2021, 45(1):17-27.
[7] 乔路丽.基于HGWO-SVM的风电功率预测方法研究[J].东北电力技术, 2023, 44(3):12-17. QIAO Luli. Research on Wind Power Forecasting Method Based on HGWO-SVM[J]. Northeast Electric Power Technology, 2023, 44(3):12-17.
[8] 商立群, 李洪波, 黄辰浩, 等.基于多变量相空间重构和优化深度极限学习机的短期风电功率预测[J].南方电网技术, 2023, 17(2):82-91. SHANG Liqun, LI Hongbo, HUANG Chenhao, et al. Short-term wind power prediction based on multivariate phase space reconstruction and optimized deep extreme learning machine[J]. Southern Power System Technology, 2023, 17(2):82-91.
[9] 杨子民, 彭小圣, 熊予涵, 等.计及邻近风电场信息与CNN-BiLSTM的短期风电功率预测[J].南方电网技术, 2023, 17(2):47-56. YANG Zimin, PENG Xiaosheng, XIONG Yuhan, et al. Short-term wind power prediction based on information in neighboring wind farms and CNN-BiLSTM[J]. Southern Power System Technology, 2023, 17(2):47-56.
[10] 胡文慧, 苏欣, 姜林, 等.考虑预测误差时空相依性的短期风电功率概率预测[J].南方电网技术, 2023, 17(2):137-144. HU Wenhui, SU Xin, JIANG Lin, et al. Probabilistic prediction of short-term wind power considering the temporal and spatial dependence of prediction errors[J]. Southern Power System Technology, 2023, 17(2):137-144.
[11] 杨京渝, 罗隆福, 阳同光, 等.基于气象特征挖掘和改进深度学习模型的风电功率短期预测[J].电力自动化设备, 2023, 43(3):110-116. YANG Jingyu, LUO Longfu, YANG Tongguang, et al. Wind power short-term forecasting based on meteorological feature exploring and improved deep learning model[J]. Electric Power Automation Equipment, 2023, 43(3):110-116.
[12] 叶林, 赵金龙, 路朋, 等.考虑气象特征与波动过程关联的短期风电功率组合预测[J].电力系统自动化, 2021, 45(4):54-62. YE Lin, ZHAO Jinlong, LU Peng, et al. Combined prediction of short-term wind power considering correlation of meteorological features and fluctuation process[J]. Automation of Electric Power Systems, 2021, 45(4):54-62.
[13] 鞠冠章, 王靖然, 崔琛, 等.极端天气事件对新能源发电和电网运行影响研究[J].新能源, 2022, 50(11):77-83. JU Guanzhang, WANG Jingran, CUI Chen, et al. Impact of extreme weather events on new energy power generation and power grid operation[J]. New Energy Sources, 2022, 50(11):77-83.
[14] 叶林, 李奕霖, 裴铭, 等.寒潮天气小样本条件下的短期风电功率组合预测[J].中国电机工程学报, 2023, 43(2):543-554. YE Lin, LI Yilin, PEI Ming, et al. Combined approach for short-term wind power forecasting under cold weather with small sample[J]. Proceedings of the CSEE, 2023, 43(2):543-554.
[15] 蒋慕凝, 何宇, 张棠茜, 等.基于特征选择及误差修正的风电功率预测[J].分布式能源, 2023, 8(2):37-43. JIANG Muning, HE Yu, ZHANG Tangqian, et al. Wind Power Prediction Based on Feature Selection and Error Correction[J]. Distributed Energy, 2023, 8(2):37-43.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2023.0048
中图分类号:TM614
引用信息:
[1]郑婷婷1,单小雨1,马继涛2等.寒潮天气对风电运行和功率预测的影响分析[J].内蒙古电力技术,2023,41(04):8-12.DOI:10.19929/j.cnki.nmgdljs.2023.0048.
基金信息:
内蒙古自治区科技重大专项“大功率风氢储系统高效集成及灵活控制关键技术研究”(2021ZD0040);国家电网公司总部科技项目“基于数字物理混合仿真的新能源机组弱电网测试技术”(4000-202355091A-1-1-ZN)