9 | 0 | 54 |
下载次数 | 被引频次 | 阅读次数 |
针对双馈风电机组故障穿越控制模式不清晰,在建立机电暂态模型时采用单一控制模式无法准确反映实际特性的问题,对风机控制器进行了硬件在环测试,得到其在不同电压跌落深度下的故障穿越特性,发现双馈风电机组在低电压过渡期间的无功控制模式为指定无功电流模式,有功控制模式为指定有功电流模式,但电压跌落深度在0~0.7 (p.u.)和0.7 (p.u.)~0.9 (p.u.)时,控制参数存在显著差异。因此,辨识出双馈风电机组分段控制参数,进而建立精确的机电暂态模型,确保模型满足电力系统仿真需求,提高新能源消纳能力和电网安全稳定运行水平。
Abstract:In order to solve the problem that the fault ride-through control mode of double-fed wind turbine is not clear, and the actual characteristics cannot be accurately reflected by using a single control mode when establishing the electromechanical transient model, the hardware in the loop test is carried out on the fan controller, and its fault ride-through characteristics under different voltage drop depths are obtained. It is found that the reactive power control mode of the double-fed wind turbine during the low voltage crossing period are the specified reactive current mode and the active control mode is the specified active current mode. However, there are significant differences in the control parameters when the voltage drop depth is from 0 to 0.7(p.u.), from 0.7(p.u.) to 0.9(p.u.), or above. Therefore, the segmented control parameters of double-fed wind turbines are identified, and an accurate electromechanical transient model is established to ensure that the model can meet the simulation requirements of the power system, and improve the new energy consumption capacity and the safe and stable operation level of the power grid.
[1] 解振华.中国低碳发展宏观战略研究总报告[M].北京:人民出版社, 2017.
[2] 于贵瑞, 郝天象, 朱剑兴.中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4):423-434. YU Guirui, HAO Tianxiang, ZHU Jianxing. Discussion on Action Strategies of China's Carbon Peak and Carbon Neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4):423-434.
[3] 国网能源研究院有限公司.中国能源电力发展展望(2020)[M]. 北京:中国电力出版社, 2020.
[4] 舒印彪, 张丽英, 张运洲, 等.我国电力碳达峰、碳中和路径研究[J].中国工程科学, 2021, 23(6):1-14. SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al.Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23(6):1-14.
[5] 谢小荣, 贺静波, 毛航银, 等."双高" 电力系统稳定性的新问题及分类探讨[J].中国电机工程学报, 2021, 41(2):461-474. XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New Issues and classification of power system stability with high shares of renewables and power electronics[J].Proceedings of the CSEE, 2021, 41(2):461-474.
[6] 张智刚, 康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报, 2022, 42(8):2806-2819. ZHANG Zhigang, KANG Chongqing. Challenges and Prospects for Constructing the New-type Power System Towards a Carbon Neutrality Future[J]. Proceedings of the CSEE, 2022, 42(8):2806-2819.
[7] 何世恩, 董新洲.大规模风电机组脱网原因分析及对策[J].电力系统保护与控制, 2012, 40(1):131-137. HE Shien, DONG Xinzhou. Cause analysis on large-scale wind turbine tripping and its countermeasures[J]. Power System Protection and Control, 2012, 40(1):131-137.
[8] 孙华东, 许涛, 郭强, 等.英国"8·9" 大停电事故分析及对中国电网的启示[J].中国电机工程学报, 2019, 39(21):6183-6192. SUN Huadong, XU Tao, GUO Qiang, et al. Analysis on Blackout in Great Britain Power Grid on August 9th, 2019 and Its Enlightenment to Power Grid in China[J]. Proceedings of the CSEE, 2019, 39(21):6183-6192.
[9] 曾辉, 孙峰, 李铁, 等.澳大利亚"9·28" 大停电事故分析及对中国启示[J].电力系统自动化, 2017, 41(13):1-6. ZENG Hui, SUN Feng, LI Tie, et al. Analysis of "9·28" Blackout in South Australia and Its Enlightenment to China[J]. Automation of Electric Power Systems, 2017, 41(13):1-6.
[10] 易俊, 卜广全, 郭强, 等.巴西"3·21" 大停电事故分析及对中国电网的启示[J].电力系统自动化, 2019, 43(2):1-6. YI Jun, BU Guangquan, GUO Qiang, et al. Analysis on Blackout in Brazilian Power Grid on March 21, 2018 and Its Enlightenment to Power Grid in China[J]. Automation of Electric Power Systems, 2019, 43(2):1-6.
[11] 李明节, 于钊, 许涛, 等.新能源并网系统引发的复杂振荡问题及其对策研究[J].电网技术, 2017, 41(4):1035-1042. LI Mingjie, YU Zhao, XU Tao, et al.Study of complex oscillation caused by renewable energy integration and its solution[J]. Power System Technology, 2017, 41(4):1035-1042.
[12] 中国电力企业联合会.风电场接入电力系统技术规定第1部分:陆上风电:GB/T 19963.1-2021[S].北京:中国标准出版社, 2021.
[13] 郭琦, 卢远宏.新型电力系统的建模仿真关键技术及展望[J].电力系统自动化, 2022, 46(10):18-32. GUO Qi, LU Yuanhong. Key Technologies and Prospects of Modeling and Simulation of New Power System[J]. Automation of Electric Power Systems, 2022, 46(10):18-32.
[14] 陈垣, 张波, 谢帆, 等.电力电子化电力系统多时间尺度建模与算法相关性研究进展[J].电力系统自动化, 2021, 45(15):172-183. CHEN Yuan, ZHANG Bo, XIE Fan, et al. Research Progress of Interrelationship Between Multi-time-scale Modeling and Algorithm of Power-electronized Power System[J]. Automation of Electric Power Systems, 2021, 45(15):172-183.
[15] 张兴, 孙艳霞, 李丽娜, 等.风电机组电磁暂态建模及验证[J].中国电力, 2020, 53(7):106-112. ZHANG Xing, SUN Yanxia, LI Lina, et al. Electromagnetic Transient Modelling and Verifying of Wind Turbine Generator[J]. Electric Power, 2020, 53(7):106-112.
[16] 刘栋, 唐绍普, 胡祥楠, 等.电力系统基础仿真算法对比分析研究[J].全球能源互联网, 2018, 1(2):137-143. LIU Dong, TANG Shaopu, HU Xiangnan, et al. The Comparison and Study of Fundamental Algorithms in Power System Simulation[J]. Journal of Global Energy Interconnection, 2018, 1(2):137-143.
[17] 能源行业风电标准化技术委员会风电场并网管理分技术委员会.风电机组电气仿真模型验证规程:NB/T 31053-2021[S].北京:中国电力出版社, 2021.
[18] 汤涌, 卜广全, 印永华, 等.PSD-ST暂态稳定程序用户手册5.8版[R].北京:中国电力科学研究院, 2021.
[19] 卓振宇, 张宁, 谢小荣, 等.高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化, 2021, 45(9):171-191. ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J].Automation of Electric Power Systems, 2021, 45(9):171-191.
[20] 李亚楼, 张星, 胡善华, 等.含高比例电力电子装备电力系统安全稳定分析建模仿真技术[J].电力系统自动化, 2022, 46(10):33-42. LI Yalou, ZHANG Xing, HU Shanhua, et al. Modeling and Simulation Technology for Stability Analysis of Power System with High Proportion of Power Electronics[J]. Automation of Electric Power Systems, 2022, 46(10):33-42.
[21] 高峰, 周孝信, 朱宁辉, 等.直驱式风电机组机电暂态建模及仿真[J].电网技术, 2011, 35(11):29-34. GAO Feng, ZHOU Xiaoxin, ZHU Ninghui, et al. Electromechanical Transient Modeling and Simulation of Direct-Drive Wind Turbine System With Permanent Magnet Synchronous Generator[J]. Power System Technology, 2011, 35(11):29-34.
[22] 杨旼才, 余建峰, 欧阳金鑫, 等.电网故障下永磁直驱风电机组机电暂态全过程等值建模方法[J].电工电能新技术, 2021, 40(5):22-33. YANG Mincai, YU Jianfeng, OUYANG Jinxin, et al. Equivalent modeling method of whole electromechanical transient state of permanent magnet direct-drive wind turbine under grid fault[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(5):22-33.
[23] 潘学萍, 温荣超, 鞠平, 等.双馈风电机组网侧控制器参数辨识的频域方法[J].电网技术, 2015, 39(3):634-638. PAN Xueping, WEN Rongchao, JU Ping, et al. A Frequency-Domain Based Method to Identify Parameters of Grid Side Converter Controller for Doubly Fed Induction Generators[J]. Power System Technology, 2015, 39(3):634-638.
[24] 何廷一, 李胜男, 黄伟, 等.基于实测参数辨识的双馈风机机电暂态建模研究[J].云南电力技术, 2020, 48(2):99-102, 110. HE Tingyi, LI Shengnan, HUANG Wei, et al. Parameter Identificantion Method of DFIG Electromechanical Transient Modeling Based on Measured Data[J]. Yunnan Electric Power, 2020, 48(2):99-102, 110.
[25] 田新首.大规模双馈风电场与电网交互作用机理及其控制策略研究[D].北京:华北电力大学, 2016.
[26] 胡宏彬, 丛雨, 翟寅, 等.1.5 MW永磁直驱式风电机组控制系统仿真分析[J].内蒙古电力技术, 2020, 38(4):32-36. HU Hongbin, CONG Yu, ZHAI Yin, et al. Simulation Analysis of Control System for 1.5 MW Permanent Magnet Direct Drive Wind Turbine[J]. Inner Mongolia Electric Power, 2020, 38(4):32-36.
[27] 王辉, 王艺霏, 王姗姗, 等.基于动态电压指令值变化的双馈异步风力发电系统高低电压穿越控制策略[J].高电压技术, 2022, 48(9):3680-3688. WANG Hui, WANG Yifei, WANG Shanshan, et al. High-and Low-voltage Ride-through Control Strategy for DFIG Wind Power System Based on Variable Dynamic Voltage Command Value[J]. High Voltage Engineering, 2022, 48(9):3680-3688.
[28] 李雨龙, 袁旭峰, 陈瑞洁, 等.计及无功补偿的双馈风机低电压穿越技术[J].电网与清洁能源, 2021, 37(9):100-107, 117. LI Yulong, YUAN Xufeng, CHEN Ruijie, et al. Low Voltage Ride Through Technology of DFIG Considering Reactive Power Compensation[J]. Advances of Power System & Hydroelectric Engineering, 2021, 37(9):100-107, 117.
[29] 姜惠兰, 王绍辉, 贾燕琪, 等.基于定子电流微分前馈控制的双馈异步风力发电机低电压穿越复合控制策略[J].高电压技术, 2021, 47(1):198-204. JIANG Huilan, WANG Shaohui, JIA Yanqi, et al. Low Voltage Ride-through Compound Control Strategy of Doubly-fed Induction Generator Based on Stator Current Differential Feedforward Control[J]. High Voltage Engineering, 2021, 47(1):198-204.
[30] 欧阳金鑫, 唐挺, 郑迪, 等.低电压穿越控制下双馈风电机组短路电流特性与计算方法[J].电工技术学报, 2017, 32(22):216-224. OUYANG Jinxin, TANG Ting, ZHENG Di, et al. Characteristics and Calculation Method of Short-Circuit Current of Doubly Fed Wind Generator under Lower Voltage Ride Through[J]. Transactions of China Electrotechnical Society, 2017, 32(22):216-224.
[31] 能源行业风电标准化技术委员会.风电机组电气仿真模型建模导则:NB/T 31066-2015[S].北京:中国电力出版社, 2016.
[32] 孔旻玥.双馈风电机组并网运行控制系统参数辨识技术研究[D]. 杭州:浙江大学, 2022.
[33] 王立强, 曹斌, 王琪, 等.基于RT-LAB的双馈风电机组建模与仿真[J].内蒙古电力技术, 2020, 38(4):43-46. WANG Liqiang, CAO Bin, WANG Qi, et al. Modeling and Simulation of Doubly Fed Wind Turbine Based on RT-LAB[J]. Inner Mongolia Electric Power, 2020, 38(4):43-46.
[34] 王立强, 曹斌, 丛雨, 等.基于RT-LAB的SVG电网适应性仿真评估[J].内蒙古电力技术, 2021, 39(2):20-24. WANG Liqiang, CAO Bin, CONG Yu, et al. Grid Adaptability Simulation Evaluation of SVG Based on RT-LAB[J]. Inner Mongolia Electric Power, 2021, 39(2):20-24.
基本信息:
DOI:10.19929/j.cnki.nmgdljs.2023.0034
中图分类号:
引用信息:
[1]刘宇1,丛雨1,郝晓玮2等.基于PSD-BPA的双馈风电机组分段故障穿越特性及控制模式分析[J].内蒙古电力技术,2023(03):8-15.DOI:10.19929/j.cnki.nmgdljs.2023.0034.
基金信息:
内蒙古自治区科技重大专项“适应高比例新能源消纳的储能电站协调运行控制关键技术研究与示范应用”(2021ZD0026);内蒙古电力(集团)有限责任公司科技项目“基于数模混合仿真的新能源频率电压支撑电网技术研究”(2022-17)