nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 03, 86-90
基于改进PCA-SARMA的电厂除尘设备故障预警方法及应用
基金项目(Foundation): 国家能源投资集团有限责任公司科技项目“辅助监盘系统研究与应用”(GNHB-22-1)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2023.0044
摘要:

提出一种基于改进PCA-SARMA的电厂除尘设备故障预警方法,首先对所有与除尘设备运行状态相关的特征参数采用改进主元分析法进行降维处理,然后在新主元特征参数的基础上采用SARMA算法对燃煤电厂除尘设备进行建模分析,最后对内蒙古某电厂600 MW燃煤机组LCM-D/G型袋式除尘设备进行实例验证。结果表明,该方法可以提前发现燃煤电厂除尘设备故障征兆,实现对燃煤电厂除尘设备的早期故障预警。

Abstract:

In this paper, a fault warning method for dust removal equipment in power plants based on improved PCA-SARMA is proposed. Firstly, the improved principal component analysis method is used to dimensionally reduce all characteristic parameters related to the operating state of the dust removal equipment. Then, on the basis of the new principal component characteristic parameters, SARMA algorithm is used to model and analyze the dust removal equipment of coal-fired power plant. Finally, an example of LCM-D/G bag dust removal equipment of a 600 MW coal-fired unit in a power plant in Inner Mongolia is verified. The results show that the method can detect the signs of dust removal equipment failures in coal-fired power plants in advance, and achieve early fault warning of dust removal equipment in coal-fired power plants.

参考文献

[1] 张晓宇.电除尘器效率与节能研究[D].北京:华北电力大学, 2012:48.

[2] 赵茜.面向多阶段间歇过程监控的PCA方法研究[D].北京:北京化工大学, 2010:1.

[3] ZHU Xiongzhuo, GAO Dali, YANG Chong, et al. A blast furnace fault monitoring algorithm with low false alarm rate:Ensemble of greedy dynamic principal component analysis-Gaussian mixture model[J]. Chinese Journal of Chemical Engineering, 2023, 57:151-161.

[4] Sushma Jaiswal, Manoj Kumar Pandey. Linear Discriminate Analysis based Robust Watermarking in DWT and LWT Domain with PCA based Statistical Feature Reduction[J]. International Journal of Image, Graphics and Signal Processing(IJIGSP), 2023, 15(2):73-88.

[5] 刘文慧, 徐遵义, 张旭冉, 等.基于互信息和PCA理论的湿法烟气脱硫工况特征提取方法[J].中国电力, 2020, 53(8):158-163. LIU Wenhui, XU Zunyi, ZHANG Xuran, et al. Feature Extraction Method for Wet Flue Gas Desulfurization Under Operating Conditions Based on Mutual Information and PCA Theory[J]. Electric Power, 2020, 53(8):158-163.

[6] Gopal Gokilakrishnan, Murugesan Vigneshkumar. Comparative assessment over the selection of lean supply chain practices through fuzzy integrated principal component analysis, gray relational analysis, and complex proportional assessment approaches[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2023, 237(2):269-279.

[7] CAI Wenyuan, DENG Rui, GAO Chengquan, et al. Evaluation Techniques for Shale Oil Lithology and Mineral Composition Based on Principal Component Analysis Optimized Clustering Algorithm[J]. Processes, 2023, 11(3):958.

[8] 聊方伦, 周平.基于PCA的火电厂电气设备故障诊断方法[J].自动化技术与应用, 2022, 41(3):39-43. LIAO Fanglun, ZHOU Ping. Fault Diagnosis Method of Electrical Equipment in Thermal Power Plant Based on PCA[J].Techniques of Automation and Applications, 2022, 41(3):39-43.

[9] WANG Tianxiao, JING Zhecheng, ZHANG Shupei, et al. Utilizing Principal Component Analysis and Hierarchical Clustering to Develop Driving Cycles:A Case Study in Zhenjiang[J]. Sustainability, 2023, 15(6):4845.

[10] Choo KiBeom, Cho Hyunjoon, Park JungHyeun, et al. A Research on Fault Diagnosis of a USV Thruster Based on PCA and Entropy[J]. Applied Sciences, 2023, 13(5):3344.

[11] 黄伟, 李常伟, 席建忠.基于PCA-MEA-WNN模型的燃烧不稳定性检测方法[J].动力工程学报, 2021, 41(4):286-293. HUANG Wei, LI Changwei, XI Jianzhong. Detection Method of Combustion Instability Based on PCA-MEA-WNN Model[J]. Journal Of Chinese Society Of Power Engineering, 2021, 41(4):286-293.

[12] Attouri Khadija, Mansouri Majdi, Hajji Mansour, et al. Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM[J]. Sustainability, 2023, 15(4):3191.

[13] 付江永.主元分析在火电厂燃烧优化中的应用[D].北京:华北电力大学, 2011:6-8.

[14] YU Hang, GAO Haibo, HE Yelan, et al. A novel motor fault diagnosis method based on principal component analysis (PCA) with a discrete belief rule base(DBRB) system[J]. Measurement Science and Technology, 2023, 34(3):35012.

[15] 黄宇斐, 石新发, 贺石中, 等.一种基于主成分分析与支持向量机的风电齿轮箱故障诊断方法[J].热能动力工程, 2022, 37(10):175-181. HUANG Yufei, SHI Xinfa, HE Shizhong, et al. A Fault Diagnosis Method of Wind Turbine Gearbox based on PCA and SVM[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(10):175-181.

[16] 孙宏雨, 李元.基于模糊C均值与主成分分析的故障检测研究[J].自动化仪表, 2022, 43(7):79-85. SUN Hongyu, Li Yuan. Fault Detection Research Based on Fuzzy C-Means and Principal Component Analysis[J]. Process Automation Instrumentation, 2022, 43(7):79-85.

[17] XIAO Rongge, ZHUANG Qi, JIN Shuaishuai, et al. Evaluation of influencing factors of pipeline wax deposition strength based on principal component analysis[J]. Petroleum Science and Technology, 2023, 41(6):700-711.

[18] 彭彤宇, 茅大钧, 韩万里.基于改进ARMA预测模型的电厂风机状态预测[J].上海电力学院学报, 2019, 35(6):535-538. PENG Tongyu, MAO Dajun, HAN Wanli. State Prediction of Power Plant Fans Based on Improved ARMA[J]. Journal of Shanghai University of Electric Power, 2019, 35(6):535-538.

[19] Kumar Mohit, Tiwari Reet Kamal, Kumar Kamal, et al. Statistical evaluation of snow accumulation and depletion from remotely sensed MODIS snow time series data using the SARIMA model[J]. AQUA-Water Infrastructure, Ecosystems and Society, 2023, 72(3):348-362.

[20] 高骞, 张浩天, 汤奕.基于预测模型的发电厂异常数据辨识方法[J].电力工程技术, 2020, 39(4):164-170. GAO Qian, ZHANG Haotian, TANG Yi. Abnormal data analysis method of power plant data based on forecast model[J]. Jiangsu Electrical Engineering, 2020, 39(4):164-170.

[21] Diop Mamadou Diéne, Sadefo Kamdem Jules. Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process[J]. Journal of Quantitative Economics, 2022, 21(1):1-40.

[22] 冯剑, 姚罕琦, 黄啸虎, 等.ARIMA算法在工业控制器故障预测的应用[J].自动化仪表, 2022, 43(11):62-67. FENG Jian, YAO Hanqi, HUANG Xiaohu, et al. Application of ARIMA Algorithm to Industrial Controller Fault Prediction[J]. Process Automation Instrumentation, 2022, 43(11):62-67.

[23] Idrais Jaafar, El Abassi Rida, El Moudene Yassine, et al. Characterizing community behavior in OSNs:Modeling and forecasting activity on Facebook using the SARIMA model[J]. Journal of Intelligent & Fuzzy Systems, 2022, 43(3):3757-3769.

[24] 赵万里, 郭迎清, 杨菁, 等.基于ARMA的航空发动机传感器故障诊断及实时验证[J].航空计算技术, 2022, 52(1):16-20. ZHAO Wanli, GUO Yingqing, YANG Jing, et al. Aero-engine Sensor Fault Diagnosis and Real-time Verification Based on ARMA Model[J]. Aeronautical Computing Technique, 2022, 52(1):16-20.

[25] MENG Zong, ZHANG Ying, ZHU Bo, et al. Research on rolling bearing fault diagnosis method based on ARMA and optimized MOMEDA[J]. Measurement, 2022, 189(15):110465.

[26] WANG Ling, PAN Jin, GAO Yanfeng, et al. Incipient Fault Diagnosis of Limit Switch based on a ARMA Model[J]. Measurement, 2018, 135:473-480.

[27] A. Joshuva, V. Sugumaran. Improvement in wind energy production through condition monitoring of wind turbine blades using vibration signatures and ARMA features:a data-driven approach[J]. Progress in Industrial Ecology, an International Journal, 2019, 13(3):207-231.

[28] 陈佳威, 邓新, 马群又, 等.油液在线监测系统的设计与实现[J]. 机电工程技术, 2023, 52(4):109-112. CHEN Jiawei, DENG Xin, MA Qunyou, et al. Design and Realization of Oil Online Monitoring System[J]. Mechanical & Electrical Engineering Technology, 2023, 52(4):109-112.

[29] LIU Jiaxin, ZHAO Zijian, ZHONG Yuanchen, et al. Prediction of the dissolved gas concentration in power transformer oil based on SARIMA model[J]. Energy Reports, 2022, 8(S5):1360-1367.

[30] 郜逸星, 孙淑珍.小波去噪结合ARMA模型在电力设备故障率预测中的应用[J].内蒙古工业大学学报(自然科学版), 2019, 38(2):122-128. GAO Yixing, SUN Shuzhen. Failure Rate Prediction Method Based on Wavelet Correlation Denoising Combined with ARMA Model[J]. Journal of Inner Mongolia University of Technology (Natural science edition), 2019, 38(2):122-128.

[31] 韩清鹏, 李天成, 李晨晨, 等.基于ARMA模型的滚动轴承故障诊断研究[J].机电工程技术, 2018, 47(1):68-71. HAN Qingpeng, LI Tiancheng, LI Chenchen, et al. Fault Identification of the Rolling Bearings Based on ARMA Method[J]. Mechanical & Electrical Engineering Technology, 2018, 47(1):68-71.

[32] 赵明, 梁俊宇, 李孟阳, 等.基于主元分析的水轮机组导轴承异常诊断方法研究[J].云南电力技术, 2019, 47(6):24-27. ZHAO Ming, LIANG Junyu, LI Mengyang, et al. Research on Abnormal Diagnostic Method of Hydroturbine Guide Bearing Based on Principal Component Analysis[J]. Yunnan Electric Power, 2019, 47(6):24-27.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2023.0044

中图分类号:

引用信息:

[1]朱明皓.基于改进PCA-SARMA的电厂除尘设备故障预警方法及应用[J].内蒙古电力技术,2023(03):86-90.DOI:10.19929/j.cnki.nmgdljs.2023.0044.

基金信息:

国家能源投资集团有限责任公司科技项目“辅助监盘系统研究与应用”(GNHB-22-1)

检 索 高级检索