nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 03, 26-35
串联蓄电池组均衡电流控制方法研究
基金项目(Foundation): 北京市教委科技项目“可灵活扩容的交流微网系统稳定运行控制”(KM201910009010)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2023.0036
摘要:

蓄电池储能系统广泛应用于微电网和新能源汽车等领域,在蓄电池组中,单体蓄电池的性能会影响整个电池组的性能,需要均衡控制消除蓄电池间的差异性,保证整个蓄电池组的使用性能。针对以上问题,选择串联蓄电池组进行均衡研究,以荷电状态(State of Charge,SOC)作为均衡依据,选取二阶RC等效电路的电池模型,通过混合脉冲功率特性实验得到电池数据,用Matlab进行参数辨识,根据扩展卡尔曼滤波原理对SOC进行估计。基于Cuk均衡电路,以各蓄电池SOC的方差作为判断条件控制蓄电池组的均衡工作开启。仿真和实验验证了二阶RC等效电路的电池模型合理性和基于扩展卡尔曼滤波估计SOC的准确性,以及基于Cuk均衡电路的均衡电流控制策略的有效性,实现了均衡电流控制。

Abstract:

Battery energy storage system is widely used in micro-grid and new energy vehicles. In battery packs, the performance of single battery will affect the performance of the entire battery pack. Therefore, it is necessary to balance the control to eliminate the difference between the batteries and ensure the performance of the entire battery pack. This paper selects the series battery pack for equalization research, using the state of charge (SOC) as the equalization basis, selects a second-order RC equivalent circuit battery model, obtains the battery data by the hybrid pulse power characteristic experiment, uses Matlab for parameter identification, and estimates the SOC according to the extended Kalman filter principle. Based on the equalization circuit of Cuk, the variance of each battery SOC is used as the judgment condition to control the equalization of the battery. The simulation and experiment verify the rationality of the battery model of the second-order RC equivalent circuit, the accuracy of SOC estimation based on extended Kalman filter, and the equalization current control strategy based on Cuk equalization circuit, which achieves equalizing current control.

参考文献

[1] 戴海峰, 王楠, 魏学哲, 等.车用动力锂离子电池单体不一致性问题研究综述[J].汽车工程, 2014, 36(2):181-188, 203. DAI Haifeng, WANG Nan, WEI Xuezhe, et al. A Research Review on the Cell Inconsistency of Li-ion Traction Batteries in Electric Vehicles[J]. Automotive Engineering, 2014, 36(2):181-188, 203.

[2] 黄莉莉, 任星星, 苗博博, 等.基于改进Rint模型锂离子电池SOC估计[J].电池工业, 2022, 26(4):177-180. HUANG Lili, REN Xingxing, MIAO Bobo, et al. SOC Estimation of Lithium-Ion Battery Based on Rint Model[J]. Chinese Battery Industry, 2022, 26(4):177-180.

[3] 徐东辉.锂电池一阶RC等效电路模型的动力学特性分析[J].电源技术, 2021, 45(11):1448-1452. XU Donghui. Dynamic Analysis of First-order RC Equivalent Circuit Model for Automotive Lithium Ion Power Batteries[J]. Chinese Journal of Power Sources, 2021, 45(11):1448-1452.

[4] 刘冬雷, 范永存, 王顺利, 等.基于RFMRA和改进PNGV模型的锂离子电池SOC估算[J].电池, 2021, 51(5):470-473. LIU Donglei, FAN Yongcun, WANG Shunli, et al. Estimation of Li-ion Battery SOC Based on RFMRA and Improved PNGV Model[J]. Battery Bimonthly, 2021, 51(5):470-473.

[5] 汪贵芳, 王顺利, 于春梅.结合Thevenin和PNGV模型的电池等效电路建模改进[J].自动化仪表, 2021, 42(2):45-49, 55. WANG Guifang, WANG Shunli, YU Chunmei. Improvement of Battery Equivalent Circuit Modeling Combined with Thevenin and PNGV Models[J]. Process Automation Instrumentation, 2021, 42(2):45-49, 55.

[6] 郭玉威.基于GNL模型自适应无迹卡尔曼滤波的电池荷电状态估计[D].北京:华北电力大学, 2019.

[7] 杜森, 谢立洁, 徐梓荐, 等.三阶扩展GNL电池模型的研究[J].电子设计工程, 2018, 26(20):110-113, 118. DU Sen, XIE Lijie, XU Zijian, et al. Research on Three Level Expanded GNL Cell Module[J]. Electronic Design Engineering, 2018, 26(20):110-113, 118.

[8] 冷炎.基于CKF的锂电池SOC估算及其电池管理系统研究[D].镇江:江苏大学, 2016.

[9] 刘迪, 李琳, 姜晓健.基于安时积分法和UKF的锂电池SOC估测[J].新型工业化, 2021, 11(11):125-128. LIU Di, LI Lin, JIANG Xiaojian. SOC Estimation of Li-Ion Batteries Based on Ampere-time Integration Method and UKF[J]. The Journal of New Industrialization, 2021, 11(11):125-128.

[10] 申彩英, 左凯.基于开路电压法的磷酸铁锂电池SOC估算研究[J].电源技术, 2019, 43(11):1789-1791. SHEN Caiying, ZUO Kai. Research on SOC estimation of LiFePO4 Batteries Based on Open Circuit Voltage Method[J]. Chinese Journal of Power Sources, 2019, 43(11):1789-1791.

[11] 孙艳艳, 周雪松, 游祥龙, 等.基于开路电压法的电池荷电状态估算修正[J].内燃机与配件, 2019(19):225-226. SUN Yanyan, ZHOU Xuesong, YOU Xianglong, et al. Correction of Battery Charge State Estimation Based on Open Circuit Voltage Method[J]. Internal Combustion Engine & Parts, 2019(19):225-226.

[12] 续远.基于安时积分法与开路电压法估测电池SOC[J].新型工业化, 2022, 12(1):123-124, 127. XU Yuan. Estimation of Battery SOC Based on Ampere-time Integration and Open-circuit Voltage Method[J]. The Journal of New Industrialization, 2022, 12(1):123-124, 127.

[13] 王绍远, 胡斌, 王良秀, 等.基于卡尔曼滤波法的船用磷酸铁锂电池SOC仿真估算[J].船舶工程, 2022, 44(2):89-93. WANG Shaoyuan, HU Bin, WANG Liangxiu, et al. Simulation of SOC for Marine LiFePO4 Battery Based on Kalman Filter[J]. Ship Engineering, 2022, 44(2):89-93.

[14] 黄英.卡尔曼滤波法估算电池系统荷电状态[J].汽车实用技术, 2021, 46(11):6-9. HUANG Ying. Estimating the State of Charge of a Battery System by Kalman Filter Method[J]. Automobile Technology, 2021, 46(11):6-9.

[15] LI Zheng, ZHANG Liping, ZHANG Rui, et al. Unscented Kalman filtering method for scheduling photovoltaic power generation system fluctuations[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2021, 235(3):608-619.

[16] 王党树, 王新霞.基于扩展卡尔曼滤波的锂电池SOC估算[J].电源技术, 2019, 43(9):1458-1460. WANG Dangshu, WANG Xinxia. SOC estimation of lithium-ion battery based on extended Kalman filter[J]. Chinese Journal of Power Sources, 2019, 43(9):1458-1460.

[17] 杨学平, 王正江, 蒋超宇, 等.基于BP神经网络法研究锂电池荷电状态[J].材料导报, 2019, 33(增刊2):53-55. YANG Xueping, WANG Zhengjiang, JIANG Chaoyu, et al. State of Charge of Lithium-Ion Battery Based on BP Neural Network[J]. Materials Reports, 2019, 33(S2):53-55.

[18] LIU Xiaojing, DAI Yawen. Energy storage battery SOC estimate based on improved BP neural network[J]. Journal of Physics:Conference Series, 2022:2187.

[19] 曹弘飞, 朱新坚.BP神经网络在线优化卡尔曼滤波算法在钒电池SOC估算中的应用[J].电力建设, 2018, 39(4):9-14. CAO Hongfei, ZHU Xinjian. Application of Online Optimized Kalman Filter using BP Neural Network on SOC Estimation of Vanadium Redox Flow Battery[J]. Electric Power Construction, 2018, 39(4):9-14.

[20] 孙志浩.动力电池主动均衡技术的研究[D].哈尔滨:哈尔滨工业大学, 2019.

[21] 李素平, 许明坤, 唐瑞华.一种多电容拓扑结构的均衡电路设计与仿真[J].电子世界, 2019(14):15-17. LI Suping, XU Mingkun, TANG Ruihua. Design and Simulation of an Equalisation Circuit with a Multi-Capacitor Topology[J]. Electronics World, 2019(14):15-17.

[22] 王慧娴.串联蓄电池组均衡电流定量控制策略的研究[D].北京:北方工业大学, 2017.

[23] 宫茗宣.锂离子电池SOC估算及变电流均衡控制研究[D].大连:大连海事大学, 2020.

[24] 严志星, 曾君, 赖臻, 等.一种基于内置变压器的高增益双向DC-DC变换器[J].电源学报, 2020, 18(3):4-12. YAN Zhixing, ZENG Jun, LAI Zhen, et al. High voltage-gain bidirectional DC-DC converter based on built-in transformer[J]. Journal of Power Supply, 2020, 18(3):4-12.

[25] 梁中会, 李宁, 韩兴旺, 等.一种基于开关电容的电池串均衡电路[J].电力电子技术, 2021, 55(8):28-30, 35. LIANG Zhonghui, LI Ning, HAN Xingwang, et al. A Battery Strings Equalizer Circuit Based on Switching Capacitance[J]. Power Electronics, 2021, 55(8):28-30, 35.

[26] S. Yarlagadda, T. T. Hartley, I. Husain. A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology[J]. IEEE Transactions on Industry Applications, 2013, 49(6):2720-2729.

[27] 范元亮, 吴涵, 徐梦然, 等.一种混合开关电容和开关电感的新型均衡电路[J].电工电能新技术, 2021, 40(6):57-63. FAN Yuanliang, WU Han, XU Mengran, et al. A Novel Equalization Circuit Combining Switched-Capacitor and Switched-Inductor[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(6):57-63.

[28] 杨坚, 张巧杰, 赵旭.电池组改进型电感均衡电路研究[J].传感器世界, 2018, 24(1):19-24. YANG Jian, ZHANG Qiaojie, ZHAO Xu. Improved Inductance Equalization Circuit for Battery Pack[J]. Sensor World, 2018, 24(1):19-24.

[29] 梁嘉羿, 王友仁, 黄薛, 等.蓄电池能量均衡技术研究综述[J].机械制造与自动化, 2018, 47(3):26-30. LIANG Jiayi, WANG Youren, HUANG Xue, et al. Research Status of Balancing Technique for Series Connected Battery[J]. Machine Building & Automation, 2018, 47(3):26-30.

[30] 何俊儒, 王洪诚, 方余丞, 等.基于CUK双向变换器的串联电池均压法[J].蓄电池, 2016, 53(1):26-30. HE Junru, WANG Hongcheng, FANG Yucheng, et al. Equalizing method for series-connected battery based on CUK bidirectional converter[J]. Chinese LABAT Man, 2016, 53(1):26-30.

[31] 粟渊恺, 冯骞, 粟时平, 等.H桥链式STATCOM直流电容电压稳定与均衡控制[J].电力电子技术, 2021, 55(6):13-18. SU Yuankai, FENG Qian, SU Shiping, et al. DC capacitor voltage stability and equalization control of H-bridge cascaded STATCOM[J]. Power Electronics, 2021, 55(6):13-18.

[32] Engineeringlaboratory EIN. FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles[M/OL].[2012-06-04]. http://www.doc88.com/p-680406055857.html.

[33] 曹丽鹏, 谢阳, 李玲玲, 等.锂离子电池等效电路模型及参数辨识方法研究[J].电气时代, 2017(2):85-87. CAO Lipeng, XIE Yang, LI Lingling, et al. Equivalent circuit model and parameter identification method for Lithium-Ion batteries[J]. Electric Age, 2017(2):85-87.

[34] 王骏骏.基于ICS-LSSVM的电动汽车锂电池SOC预测[J].东北电力技术, 2022, 43(12):52-56. WANG Junjun. SOC Prediction of Electric Vehicle Lithium Battery Based on ICS-LSSVM[J]. Northeast Electric Power Technology, 2022, 43(12):52-56.

[35] 宋绍剑, 王志浩, 林小峰.基于SOC的锂动力电池组双向主动均衡控制[J].系统仿真学报, 2017, 29(3):609-617. SONG Shaojian, WANG Zhihao, LIN Xiaofeng. SOC-Based Bi-Directional Active Equalization Control for Lithium-Ion Power Battery[J]. Journal of System Simulation, 2017, 29(3):609-617.

[36] 欧阳剑, 李迪, 柳俊城.电动汽车用动力电池荷电状态估算方法研究综述[J].机电工程技术, 2016, 45(1):52-56. OUYANG Jian, LI Di, LIU Juncheng. The Overview of Research of Power Battery SOC Estimation Methods Use for Electric Vehicle[J]. Mechanical & Electrical Engineering Technology, 2016, 45(1):52-56.

[37] 原帅, 王悦, 李超.电动汽车动力电池运行中SOC性能评估分析[J].内蒙古电力技术, 2016, 34(6):81-84. YUAN Shuai, WANG Yue, LI Chao. SOC Performance Evaluation Analysis in Electric Vehicle Power Battery Operation[J]. Inner Mongolia Electric Power, 2016, 34(6):81-84.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2023.0036

中图分类号:

引用信息:

[1]刘欣博,施俊甫,黄学昊.串联蓄电池组均衡电流控制方法研究[J].内蒙古电力技术,2023(03):26-35.DOI:10.19929/j.cnki.nmgdljs.2023.0036.

基金信息:

北京市教委科技项目“可灵活扩容的交流微网系统稳定运行控制”(KM201910009010)

检 索 高级检索