nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 06, 70-77
基于孔隙尺度的石灰石煅烧和硫化反应模拟分析
基金项目(Foundation): 内蒙古自治区自然科学基金项目“基于格子Boltzmann方法的石灰石脱硫反应机理研究”(2019BS05023)
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2022.0101
摘要:

基于介观尺度(多孔介质尺度)研究循环流化床锅炉炉内石灰石脱硫机理,引入格子Boltzmann方法建立石灰石煅烧反应和硫化反应的反应动力学模型,采用C++语言开发了石灰石脱硫反应计算程序,并利用该程序研究了煅烧反应和硫化反应特性。结果表明,随着煅烧反应的进行,CaCO3逐渐被消耗,并生成多孔的CaO;提高温度可促进煅烧反应的进行,提高环境CO2质量浓度会抑制煅烧反应。对于硫化反应,生成的CaSO4会覆盖在CaO表面并使孔隙变小进而逐渐堵塞,导致部分CaO未反应完全,提高SO2质量浓度可促进硫化反应的进行,而O2质量浓度的影响与此相反,且SO2质量浓度的影响更大。

Abstract:

This paper carried out theoretical research on desulfurization mechanism of limestone in CFBB, first introduced lattice Boltzmann method and established reaction kinetics model of limestone calcination reaction and sulfation reaction based on mesoscopic scale(porous medium scale), and then developed calculation program of limestone desulfurization reaction using C ++ language. The characteristics of calcination reaction and sulfation reaction are studied by using this program. The results show that, for the calcination reaction, CaCO3 is gradually consumed and porous CaO is formed with the progress of the reaction. Increasing the temperature can promote the calcination reaction, and increasing the ambient CO2 concentration can inhibit the calcination reaction. For the sulfation reaction, the generated CaSO4 will cover the surface of CaO and make the pores smaller and gradually blocked, resulting in partial CaO incomplete reaction. Increasing the concentration of SO2 can promote the sulfation reaction, while the effect of O2 concentration is contrary, and the effect of SO2 concentration is greater.

参考文献

[1] Gómez M, Fernández A, Llavona I, et al. Experiences in sulphur capture in a 30 MWth Circulating Fluidized Bed boiler under oxy-combustion conditions[J]. Applied Thermal Engineering, 2014, 65(1):617-622.

[2] 蔡润夏,柯希玮,葛荣存,等.循环流化床超细石灰石炉内脱硫研究[J].中国电机工程学报, 2018, 38(10):3042-3048, 3155. CAI Runxia, KE Xiwei, GE Rongcun, et al. The In-situ Desulfurization With Ultra-fine Limestone for Circulat-ing Fluidized Bed Boilers[J]. Proceedings of the CSEE, 2018, 38(10):3042-3048, 3155.

[3] Anthony E J, Granatstein D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Ener-gy&Combustion Science, 2001, 27(2):215-236.

[4] Olas M, Kobylecki R, Bis Z. Simultaneous calcination and sulfation of limestone based sorbents in CFBC-effect of mechanical activation:Proceedings of the 9th Inter-national Conference on Circulating Fluidized Beds[C]. Hamburg, 2008.

[5] 王春波,张斌,陈亮,等.富氧燃烧气氛下石灰石煅烧/硫化特性及模型模拟[J].化工学报, 2015, 66(4):1537-1543. WANG Chunbo, ZHANG Bin, CHEN Liang, et al. Characterization and modeling of limestone calcination and sulfation in oxy-fuel combustion atmosphere[J]. CI-ESC Journal, 2015, 66(4):1537-1543.

[6] WANG C, CHEN L. The effect of steam on simultane ous calcination and sulfation of limestone in CFBB[J]. Fuel, 2016(175):164-171.

[7] Chen L, Wang C, Wang Z, et al. The kinetics and pore structure of sorbents during the simultaneous calci-nation/sulfation of limestone in CFB[J]. Fuel, 2017(208):203-213.

[8] 陈亮,王子铭,王春波.流化床锅炉内石灰石同时煅烧/硫化反应中煅烧动力学特性[J].化工学报, 2017, 68(12):4615-4624. CHEN Liang, WANG Ziming, WANG Chunbo. Lime-stone calcination kinetics in simultaneous calcination and sulfation under CFB conditions[J]. CIESC Journal, 2017, 68(12):4615-4624.

[9] 王子铭,陈亮,岳爽,等.同时煅烧硫化反应中石灰石微观孔结构演变特性[J].化工学报, 2018, 69(5):2149-2157, 1800. WANG Ziming, CHEN Liang, YUE Shuang, et al. Mi-crostructure evolution of procedural products during limestone simultaneous calcination/sulfation[J]. CIESC Journal, 2018, 69(5):2149-2157, 1800.

[10] 陈亮,王春波.循环流化床锅炉内石灰石同时煅烧/硫化反应模型研究[J].化工学报, 2018, 69(10):4353-4361. CHEN Liang, WANG Chunbo. Model of simultaneous calcination/sulfation reaction of limestone under CFB conditions[J]. CIESC Journal, 2018, 69(10):4353-4361.

[11] 陈亮,王春波.CFB锅炉内石灰石同时煅烧/硫化反应动力学及孔结构演变模拟[J].中国电机工程学报, 2019, 39(23):6952-6963, 7108. CHEN Liang, WANG Chunbo. Kinetic Model of the Simultaneous Calcination/Sulfation Reaction and the Pore Change of Limestone in CFB Boilers[J]. Proceed-ings of the CSEE, 2019, 39(23):6952-6963, 7108.

[12] CHEN L, HE A, ZHAO J, et al. Pore-scale modeling of complex transport phenomena in porous media[J]. Prog ress in Energy and Combustion Science, 2022, 88:100968.

[13] Stanmore B R, Gilot P. Review-calcination and carbon-ation of limestone during thermal cycling for CO2 seques-tration[J]. Fuel Processing Technology, 2005, 86(16):1707-1743.

[14] GUO Z, SHI B, ZHENG C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4):325-342.

[15] KANG Q, Lichtner P C, ZHANG D. Lattice Boltzmann pore-scale model for multicomponent reac-tive transport in porous media[J]. Journal of Geophysi-cal Research:Solid Earth, 2006, 111(B5):B05203.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2022.0101

中图分类号:

引用信息:

[1]王猛,张志勇.基于孔隙尺度的石灰石煅烧和硫化反应模拟分析[J].内蒙古电力技术,2022(06):70-77.DOI:10.19929/j.cnki.nmgdljs.2022.0101.

基金信息:

内蒙古自治区自然科学基金项目“基于格子Boltzmann方法的石灰石脱硫反应机理研究”(2019BS05023)

检 索 高级检索