nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 06, 64-69
海拔2500 m以上地区1000 kV交流线路外绝缘配置研究
基金项目(Foundation):
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2022.0100
摘要:

依据已建1000 kV交流线路的设计、运维经验,依托中国电力科学研究院等国内科研机构开展的绝缘子污闪、冰闪研究成果,按复合绝缘子工频、操作、雷电及覆冰闪络特性对海拔2500 m以上地区轻中冰区复合绝缘子配置进行了试验研究。试验表明,憎水性状态对复合绝缘子污秽闪络电压影响非常大,按弱憎水性设计,海拔0~5000 m地区1000 kV交流线路复合绝缘子长度可按9 m配置;按亲水性设计,随着海拔的升高,在9 m长度基础上需相应增加复合绝缘子的长度。同时研究发现,绝缘子表面覆冰进一步增加达到15 mm时,覆冰闪络电压显著下降,该种状况下需按覆冰闪络电压来选择复合绝缘子长度,海拔2500 m以下复合绝缘子均按9.75 m防冰伞型配置,海拔2500 m以上区域,复合绝缘子长度随海拔高度增加需相应增长。

Abstract:

Based on the design, operation and maintenance experience of the existing 1000 kV AC lines, and the research results of insulator pollution flashover and ice flashover conducted by China Electric Power Research Institute and other domestic scientific research institutions, the configuration of composite insulators in light and middle ice area over 2500 m is tested according to the power frequency, operation, lightning and ice flashover characteristics of composite insulators. The test shows that hydrophobicity has a great influence on the pollution flashover voltage of composite insulators. According to the weak hydrophobicity design, the length of composite insulators of 1000 kV AC lines in the area with an altitude from 0 m to 5000 m can be configured as 9 m. According to the hydrophilic design, the length of composite insulators should be increased correspondingly on the basis of 9 m length with the increase of the altitude. At the same time, it is found that when the ice coating on the insulator surface further increases to 15 mm, the flashover voltage of ice coating is reduced significantly. In this case, the length of composite insulators should be selected according to the ice coating flashover voltage. The composite insulators 2500 m atitude below and above are all configured with the anti-ice umbrella type of 9.75 m. The length of composite insulator increases with the increase of the altitude.

参考文献

[1] 张搏宇,殷禹,张翠霞,等.高海拔线路避雷器的绝缘配合研究[J].电磁避雷器, 2017(4):23-27, 32. ZHANG Boyu, YIN Yu, ZHANG Cuixia, et al. Study on Insulation coordination of arrester in high altitude transmission line[J]. Insulators and Surge Arresters, 2017(4):23-27, 32.

[2] 唐巍,梁明,盛道伟,等.高海拔500 kV交流输电线路绝缘子片数选择研究[J].四川电力技术, 2019, 42(5):77-81. TANG Wei, LIANG Ming, SHENG Daowei, et al. Study on the Selection of Insulator Number for 500 kV High Altitude AC Transmission Line[J]. Sichuan Elec-tric Power Technology, 2019, 42(5):77-81.

[3] 罗强,王强,罗鸣,等.高海拔500 kV输电线路绝缘子污闪特性试验研究[J].四川电力技术, 2018, 41(3):25-30, 72. LUO Qiang, WANG Qiang, LUO Ming, et al. Research on pollution flashover performance of insulators on 500 kV transmission lines in high altitude area[J]. Sichuan Electric Power Technology, 2018, 41(3):25-30, 72.

[4] 唐巍,梁明.重冰区±800 kV特高压直流线路绝缘配合研究[J].新型工业化, 2016, 6(11):93-99. TANG Wei, LIANG Ming. Study on insulation coordina-tion of ±800 kV extra high voltage DC transmission lin-ein heavy ice areas[J]. The Journal of New Industrial-ization, 2016, 6(11):93-99.

[5] 张云翔,陈昊,宋恒东,等.基于有限元法的绝缘子污闪动态电弧模型研究[J].广东电力, 2021, 34(6):119-126. ZHANG Yunxiang, CHEN Hao, SONG Hengdong, et al. Research on Dynamic Arc Model of Insulator Pollu-tion Flashover Based on Finite Element Method[J]. Guangdong Electric Power, 2021, 34(6):119-126.

[6] 韩先才,宿志一,周军,等.特高压交流复合绝缘子污闪特性深化研究[Z].北京:中国电力科学研究院, 2013.

[7] 吴浩哲,高克利,周军,等.复合绝缘子污层弱憎水性条件下的表面水滴形态[J].高电压技术, 2019, 45(2):478-483. WU Haozhe, GAO Keli, ZHOU Jun, et al. Water Drop-let Shape on Surfaces of Composite Insulators with Con-tamination Under Unobvious Hydrophobic State[J]. High Voltage Engineering, 2019, 45(2):478-483.

[8] SWIFT D A, SPELLMAN C, HADDAD A. Hydrophobicity transferfrom silicone rubber to adhering pollutants and its effect on insulator performance[J]. IEEE Transac-tions on Dielectrics and Electrical Insulation, 2006, 13(4):820-829.

[9] 胡钰骁,刘轩东,李亚伟,等.高海拔地区电晕放电对染污复合绝缘子表面憎水性的影响[J].电网技术, 2019, 43(4):1487-1494. HU Yuxiao, LIU Xuandong, LI Yawei, et al. Research of Influence of Corona Discharge on Surface Hydropho-bicity of Contaminated Composite Insulators in High Al-titude Areas[J]. Power System Technology, 2019, 43(4):1487-1494.

[10] 中华人民共和国住房和城乡建设部.110 kV~750 kV架空输电线路设计规范:GB 50545-2010[S]北京:中国计划出版社, 2010.

[11] 中华人民共和国住房和城乡建设部.交流电气装置的过电压保护和绝缘配合设计规范:GB/T 50064-2014[S].北京:中国计划出版社, 2014.

[12] 全国特高压交流输电标准化技术委员会.1000 kV特高压交流输变电工程过电压和绝缘配合:GB/T 24842-2018[S].北京:中国标准出版社, 2018.

[13] 王锐,彭向阳,文豹,等.雷电先导发展模型的引雷塔击距计算与分析[J].浙江电力, 2019, 32(3):112-118. WANG Rui, PENG Xiangyang, WEN Bao, et al. Re-search on Calculation of Lightning Tower Striking Dis-tance Based on Leader Progression Model[J]. Zhejiang Electric Power, 2019, 32(3):112-118.

[14] 王锐,金亮,彭向阳,等.不平衡绝缘配置防治同塔双回输电线路雷击同时跳闸效果仿真研究[J].浙江电力, 2020, 33(10):110-117. WANG Rui, JIN Liang, PENG Xiangyang, et al. Simu-lation Research on the Effect of Unbalanced Insula-tion Configuration on Simulataneous Lightning Trip-ping of Double-circuit Power Transmission Line[J]. Guangdong Electric Power, 2020, 33(10):110-117.

[15] 谢从珍,白剑锋,王红斌,等.基于多维关联信息融合的架空输电线路雷害风险评估方法[J].电机工程学报, 2018, 38(21):6233-6244, 6485. XIE Congzhen, BAI Jianfeng, WANG Hongbin, et al. Lightning Risk Assessment of Transmission Lines Based on Multidimensional Related Information Fusion[J]. Proceedings of the CSEE, 2018, 38(21):6233-6244, 6485.

[16] 王振国,李特,王少华,等.浙福特高压交流输电线路避雷器绕击防护性能评估[J].电磁避雷器, 2021(5):61-65. WANG Zhenguo, LI Te, WANG Shaohua, et al. Evalu-ation on the Protective Performance of the Lightning Arrester for the Lightning Shielding Failure of Zhefu UHV AC Transmission Line[J]. Insulators and Surge Arresters, 2021(5):61-65.

[17] 贺恒鑫,陈维江,殷禹,等.特高压同塔双回路转角耐张塔雷电绕击防护[J].高电压技术, 2016, 42(11):3448-3455. HE Hengxin, CHEN Weijiang, YIN Yu, et al. Light-ning shielding failure protection of the strained an-gled tower of double circuit UHV AC transmission lines[J]. High Voltage Engineering, 2016, 42(11):3448-3455.

[18] 国家电网公司科技部.1000 kV架空输电线路设计规范:GB 50065-2011[S].北京:中国计划出版社, 2011.

[19] 周军,于昕哲,刘博,等.特高压交流复合绝缘子冰闪特性深化研究[R].北京:中国电力科学研究院, 2012.

[20] 南敬,李学林,徐涛,等.750 kV防冰型复合绝缘子冰闪试验研究[J].电力建设, 2014, 35(10):47-51. NAN Jing, LI Xuelin, XU Tao, et al. Ice Flashover Test of 750 kV Anti-Icing Composite Insulators[J]. Electric Power Construction, 2014, 35(10):47-51.

[21] 黄长学,蒋兴良,杜忠东,等.110 kV防冰闪型复合绝缘子的冰闪特性[J].高电压技术, 2009, 35(10):2540-2544. HUANG Changxue, JIANG Xingliang, DU Zhongdong, et al. Ice Flashover Characteristics of 110 kV Anti-ic-ing Composite Insulator[J]. High Voltage Engineering, 2009, 35(10):2540-2544.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2022.0100

中图分类号:

引用信息:

[1]唐巍,梁明,黎亮等.海拔2500 m以上地区1000 kV交流线路外绝缘配置研究[J].内蒙古电力技术,2022(06):64-69.DOI:10.19929/j.cnki.nmgdljs.2022.0100.

基金信息:

检 索 高级检索