nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 05, 73-79
基于信息间隙决策理论的微电网多目标鲁棒优化调度
基金项目(Foundation):
邮箱(Email):
DOI: 10.19929/j.cnki.nmgdljs.2022.0085
摘要:

针对预测技术难以准确获取实际的可再生能源出力和负荷大小,其随机性影响微电网控制策略及用户经济性的问题,基于含光伏系统、储能系统和负荷的并网型微电网,考虑分时电价和需量管理,以用户日电费成本最低为目标函数,建立一种需量管理捆绑峰谷套利的微电网日前优化调度模型。基于该模型,计及光伏出力和负荷的波动性,提出基于信息间隙决策理论(Information Gap Decision Theory,IGDT)的微电网多目标鲁棒优化调度模型,制订具有鲁棒性的调度方案,并研究预设目标成本与光伏出力及负荷波动区间的定量关系。利用ε-约束方法刻画多目标问题的Pareto有效前沿,运用模糊满意度理论确定Pareto解集中的折中解,为运行人员提供合理的鲁棒决策方案。通过对某工业微电网进行仿真,并与蒙特卡洛法对比分析,验证了所建模型的可行性和有效性。

Abstract:

It is difficult to accurately obtain the renewable energy output and load based on the prediction technology. The randomness has a profound impact on the control strategy of micro-grid and the economy of users. For the grid connected micro-grid with photovoltaic system, energy storage system and load, a micro-grid day-ahead optimal scheduling model with demand management and bundled with peak-valley arbitrage is established, the objective function of which is the lowest daily electricity payment. Based on this model, taking into account the fluctuation of photovoltaic output and load, a multi-objective robust optimal scheduling model of micro-grid based on information gap decision theory (IGDT) is proposed to provide robust strategies, and study the quantitative relationship between preset target cost and photovoltaic output and load fluctuation range. The ε-constraint method is proposed to depict Pareto efficient frontier of multi-objective problem. Besides, the fuzzy satisfaction theory is used to determine the compromise solution of Pareto solution set, which provides a reasonable decision-making basis for operators. Compared with Monte Carlo method, simulation results on the micro-grid in an industrial park verify that the proposed model is feasible and effective.

参考文献

[1] 曹金声, 曾君, 刘俊峰, 等.考虑极限场景的并网型微电网分布鲁棒优化方法[J].电力系统自动化, 2022, 46(7):50-59. CAO Jinsheng, ZENG Jun, LIU Junfeng, et al. Distributionally Robust Optimization Method for Grid-connected Microgrid Considering Extreme Scenarios[J]. Automation of Electric Power Systems, 2022, 46(7):50-59.

[2] 陈丽娟, 吴甜恬, 柳惠波, 等.基于需量管理的两阶段大用户储能优化模型[J].电力系统自动化, 2019, 43(1):194-200. CHEN Lijuan, WU Tiantian, LIU Huibo, et al. Demand management based two-stage optimal storage model for large users[J]. Automation of Electric Power Systems, 2019, 43(1):194-200.

[3] 马天祥, 贾伯岩, 张智远, 等.基于二层规划的能源互联微电网能量优化调度方法[J].电力系统自动化, 2019, 43(16):34-43. MA Tianxiang, JIA Boyan, ZHANG Zhiyuan, et al. Energy Optimal Dispatching Method of Micro-energy Internet Based on Bi-level programming[J]. Automation of Electric Power Systems, 2019, 43(16):34-43.

[4] 侯慧, 薛梦雅, 陈国炎, 等.计及电动汽车充放电的微电网多目标分级经济调度[J].电力系统自动化, 2019, 43(17):55-62. HOU Hui, XUE Mengya, CHEN Guoyan, el al. Multi-objective hierarchical economic dispatch for microgrid considering charging and discharging of electric vehicles[J]. Automation of Electric Power Systems, 2019, 43(17):55-62.

[5] 刘春晖, 张政, 牟辉龙, 等.考虑不同场景的微电网短期经济调度分析[J].电子器件, 2021, 44(6):1491-1498. LIU Chunhui, ZHANG Zheng, MOU Huilong, et al. Analysis of Short-Term Economic Dispatch of Microgrid Considering Different Scenarios[J]. Chinese Journal of Electron Devices, 2021, 44(6):1491-1498.

[6] 晏开封, 张靖, 何宇, 等.基于机会约束的微电网混合整数规划优化调度[J].电力科学与工程, 2021, 37(2):17-24. YAN Kaifeng, ZHANG Jing, HE Yu, et al. The Optimal Dispatching of Mixed Integer Programming Based on Opportunity Constraint of Microgrid[J]. Electric Power Science and Engineering, 2021, 37(2):17-24.

[7] Ben-Haim Y. Information Gap decision theory[M]. San Di ego:Academic Press Inc, 2001:317-346.

[8] AHMADI A, ESMAEEL NEZHAD A, HREDZAK B. Security-constrained unit commitment in presence of lithium-ion battery storage units using information-gap decision theory[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1):148-157.

[9] 汪超群, 韦化, 吴思缘.基于信息间隙决策理论的多源联合优化机组组合[J].中国电机工程学报, 2018, 38(12):3431-3440. WANG Chaoqun, WEI Hua, WU Siyuan. Multi-power combined unit commitment based on information gap decision theory[J]. Proceedings of the CSEE, 2018, 38(12):3431-3440.

[10] 马欢, 刘玉田.基于IGDT鲁棒模型的风电爬坡事件协调调度决策[J].中国电机工程学报, 2016, 36(17):4580-4588. MA Huan, LIU Yutian. IGDT robust model-based coordinated scheduling strategy for wind power ramp events[J]. Proceedings of the CSEE, 2016, 36(17):4580-4588.

[11] 赵奇, 吕洋, 王毅, 等.考虑微电网灵活调节潜力的主动配电网鲁棒优化[J].浙江电力, 2022, 41(1):55-63. ZHAO Qi, LYU Yang, WANG Yi, et al. Robust Optimization of Active Distribution Networks Considering the Flexible Regulation Potential of Microgrids[J]. Zhejiang Electric Power, 2022, 41(1):55-63.

[12] 宋坤隆, 谢云云, 陈晞, 等.基于信息间隙决策理论的电网负荷恢复鲁棒优化[J].电力系统自动化, 2017, 41(15):113-120. SONG Kunlong, XIE Yunyun, CHEN Xi, et al. Robust restoration method for power system load based on information gap decision theory[J]. Automation of Electric Power Systems, 2017, 41(15):113-120.

[13] 蔡紫婷, 彭敏放, 沈美娥.考虑需求侧资源的智能小区综合能源日前优化调度[J]. 电力自动化设备, 2021, 41(3):18-24, 32. CAI Ziting, PENG Minfang, SHEN Mei'e.Day-ahead optimal scheduling of integrated energy in smart communities considering demand side resources[J]. Electric Power Automation Equipment, 2021, 41(3):18-24, 32.

[14] 冯其芝, 喻洁, 李扬, 等.考虑分时电价的虚拟发电厂调度策略[J].电力需求侧管理, 2014, 16(4):1-5. FENG Qizhi, YU Jie, LI Yang, et al. Scheduling strategy of virtual power plant considering time-of-use power price[J]. Power Demand Side Management, 2014, 16(4):1-5.

[15] Deb K. Multiobjective, optimization using evolutionary algorithms[M]. New York:John Wiley & Sons, 2001.

基本信息:

DOI:10.19929/j.cnki.nmgdljs.2022.0085

中图分类号:

引用信息:

[1]江南1,朱双涛1,孙志刚1等.基于信息间隙决策理论的微电网多目标鲁棒优化调度[J].内蒙古电力技术,2022(05):73-79.DOI:10.19929/j.cnki.nmgdljs.2022.0085.

基金信息:

检 索 高级检索